Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import os | |
from PIL import Image | |
import torch.nn as nn | |
import pandas as pd | |
import torch | |
from torch.optim import Adam | |
from torch.utils.data import Dataset, DataLoader | |
# Load the dataset | |
st.session_state.train_df = pd.read_csv("data/asl_data/sign_mnist_train.csv") | |
st.session_state.valid_df = pd.read_csv("data/asl_data/sign_mnist_valid.csv") | |
# Streamlit app | |
st.title("ASL Recognition App") | |
# Tabs: Dataset, Model, Prediction | |
tab1, tab2, tab3 = st.tabs(["Dataset", "Model", "Prediction"]) | |
# Dataset Tab | |
with tab1: | |
st.header("Dataset Overview") | |
st.write("Displaying sample images from the training dataset.") | |
# Convert CSV image data to images (Placeholder code for now) | |
num_samples = 10 | |
train_data = st.session_state.train_df.values[:, 1:] | |
labels = st.session_state.train_df.values[:, 0] | |
# Display sample images | |
col1, col2, col3, col4, col5 = st.columns(5) | |
for i in range(num_samples): | |
img = train_data[i].reshape(28, 28) # Assuming images are 28x28 grayscale | |
img = Image.fromarray(img.astype('uint8')) | |
with [col1, col2, col3, col4, col5][i % 5]: | |
st.image(img, caption=f"Label: {labels[i]}", use_column_width=True) | |
# Model Tab | |
with tab2: | |
st.header("Model Training") | |
st.write("Click the button to train the model.") | |
if st.button("Train Model"): | |
st.write("Training started... (Placeholder for model training)") | |
# Prediction Tab | |
with tab3: | |
st.header("Make a Prediction") | |
# File uploader | |
uploaded_file = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"]) | |
# Camera input | |
camera_file = st.camera_input("Take a picture") | |
if uploaded_file is not None: | |
image = Image.open(uploaded_file) | |
st.image(image, caption="Uploaded Image", use_column_width=True) | |
st.write("(Placeholder for image preprocessing and prediction)") | |
elif camera_file is not None: | |
image = Image.open(camera_file) | |
st.image(image, caption="Captured Image", use_column_width=True) | |
st.write("(Placeholder for image preprocessing and prediction)") | |