Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +66 -38
src/streamlit_app.py
CHANGED
@@ -1,40 +1,68 @@
|
|
1 |
-
import altair as alt
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
"""
|
15 |
-
|
16 |
-
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
|
17 |
-
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
18 |
-
|
19 |
-
indices = np.linspace(0, 1, num_points)
|
20 |
-
theta = 2 * np.pi * num_turns * indices
|
21 |
-
radius = indices
|
22 |
-
|
23 |
-
x = radius * np.cos(theta)
|
24 |
-
y = radius * np.sin(theta)
|
25 |
-
|
26 |
-
df = pd.DataFrame({
|
27 |
-
"x": x,
|
28 |
-
"y": y,
|
29 |
-
"idx": indices,
|
30 |
-
"rand": np.random.randn(num_points),
|
31 |
-
})
|
32 |
-
|
33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
34 |
-
.mark_point(filled=True)
|
35 |
-
.encode(
|
36 |
-
x=alt.X("x", axis=None),
|
37 |
-
y=alt.Y("y", axis=None),
|
38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
40 |
-
))
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import plotly.graph_objects as go
|
3 |
+
import pandas as pd
|
4 |
+
import plotly.express as px
|
5 |
+
|
6 |
+
#Read Avocado Dataset
|
7 |
+
data = pd.read_csv("./files/avocado.csv")
|
8 |
+
|
9 |
+
st.header("Pie Chart")
|
10 |
+
# Implementing Pie Plot
|
11 |
+
pie_chart = go.Figure(
|
12 |
+
go.Pie(labels = data.type,
|
13 |
+
values = data.AveragePrice,
|
14 |
+
hoverinfo = "label+percent",
|
15 |
+
textinfo = "value+percent"
|
16 |
+
))
|
17 |
+
|
18 |
+
st.plotly_chart(pie_chart)
|
19 |
+
|
20 |
+
st.header("Donut Chart")
|
21 |
+
# Donut Chart
|
22 |
+
donut_chart = px.pie(
|
23 |
+
names = data.type,
|
24 |
+
values = data.AveragePrice,
|
25 |
+
hole=0.25,
|
26 |
+
)
|
27 |
+
|
28 |
+
st.plotly_chart(donut_chart)
|
29 |
+
|
30 |
+
st.header("Scatter Chart")
|
31 |
+
#Scatter
|
32 |
+
scat = px.scatter(
|
33 |
+
x = data.Date,
|
34 |
+
y = data.AveragePrice
|
35 |
+
)
|
36 |
+
st.plotly_chart(scat)
|
37 |
+
|
38 |
+
|
39 |
+
# Minimizing Dataset
|
40 |
+
albany_df = data[data['region']=="Albany"]
|
41 |
+
al_df = albany_df[albany_df["year"]==2015]
|
42 |
+
#Line
|
43 |
+
line_chart = px.line(
|
44 |
+
x = al_df["Date"],
|
45 |
+
y = al_df["Large Bags"]
|
46 |
+
)
|
47 |
+
|
48 |
+
line_chart.update_traces(line_color = "orange")
|
49 |
+
st.header("Line Chart")
|
50 |
+
st.plotly_chart(line_chart)
|
51 |
+
|
52 |
+
# Bar graph
|
53 |
+
bar_graph = px.bar(
|
54 |
+
al_df,
|
55 |
+
title = "Bar Graph",
|
56 |
+
x = "Date",
|
57 |
+
y = "Large Bags"
|
58 |
+
)
|
59 |
+
st.plotly_chart(bar_graph)
|
60 |
|
61 |
+
#Bar Color
|
62 |
+
bar_graph = px.bar(
|
63 |
+
x = al_df["Date"],
|
64 |
+
y = al_df["Large Bags"],
|
65 |
+
title = "Bar Graph",
|
66 |
+
color=al_df["Large Bags"]
|
67 |
+
)
|
68 |
+
st.plotly_chart(bar_graph)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|