louiecerv commited on
Commit
a4592ff
Β·
1 Parent(s): dcea5c3

save to remote

Browse files
Files changed (1) hide show
  1. README.md +42 -1
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  title: Svm Classifier
3
- emoji: 🏒
4
  colorFrom: blue
5
  colorTo: red
6
  sdk: streamlit
@@ -12,3 +12,44 @@ short_description: SVM Classifier and the various Kernels
12
  ---
13
 
14
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  title: Svm Classifier
3
+ emoji: πŸ“Š
4
  colorFrom: blue
5
  colorTo: red
6
  sdk: streamlit
 
12
  ---
13
 
14
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
15
+
16
+ # SVM Business Classification App πŸ€–
17
+ =====================================
18
+
19
+ ## Overview πŸ“Š
20
+ ---------------
21
+
22
+ This Streamlit app demonstrates the application of Support Vector Machines (SVMs) with different kernel types to a non-linear business classification problem πŸ“ˆ. The app allows users to explore how various kernel types and hyperparameters impact classification performance πŸ”.
23
+
24
+ ## Dataset πŸ“
25
+ ------------
26
+
27
+ The app uses a simulated dataset representing customer behaviors, which requires non-linear classification πŸ“Š. The dataset is structured to evaluate the effectiveness of SVMs with polynomial or RBF kernels πŸ€”.
28
+
29
+ ## Features πŸŽ‰
30
+ ------------
31
+
32
+ The app offers the following features:
33
+
34
+ * **Kernel Selection** 🌐: Choose from Linear, Polynomial, and RBF kernel types to evaluate their impact on classification performance.
35
+ * **Hyperparameter Tuning** πŸ”§: Adjust regularization (C), epsilon, polynomial degree, and gamma values to optimize model performance πŸ“ˆ.
36
+ * **Data Visualization** πŸ“Š: Visualize the dataset using a scatter plot to understand the underlying structure πŸ”.
37
+ * **Model Evaluation** πŸ“: Assess model performance using accuracy scores, classification reports, and confusion matrices πŸ“Š.
38
+
39
+ ## Usage πŸ“š
40
+ ---------
41
+
42
+ 1. Select a kernel type from the tabs πŸ“.
43
+ 2. Adjust hyperparameters using the sliders πŸ”§.
44
+ 3. Evaluate model performance using the provided metrics and visualizations πŸ“Š.
45
+
46
+ ## Example Use Cases πŸ“ˆ
47
+ ---------------------
48
+
49
+ * **Business Problem Solving** πŸ’Ό: Use the app to explore how different SVM kernels impact classification performance in a non-linear business problem πŸ“Š.
50
+ * **Education and Research** πŸ“š: Utilize the app as a teaching tool to demonstrate the concepts of SVMs and kernel selection πŸ€”.
51
+
52
+ ## Conclusion πŸŽ‰
53
+ ----------
54
+
55
+ This app provides an interactive platform to explore the application of SVMs with different kernel types to a non-linear business classification problem πŸ“Š. By adjusting hyperparameters and evaluating model performance, users can gain insights into the strengths and weaknesses of each kernel type πŸ”.