import numpy as np import pandas as pd from sklearn.datasets import make_moons def generate_simulated_data(): """Generates a simulated business classification dataset and saves it to a CSV file.""" np.random.seed(42) X, y = make_moons(n_samples=300, noise=0.2, random_state=42) # Convert to DataFrame df = pd.DataFrame(X, columns=["Feature1", "Feature2"]) df["Target"] = y # Save to CSV df.to_csv("business_data.csv", index=False) if __name__ == "__main__": generate_simulated_data() print("Simulated business dataset saved as 'business_data.csv'.")