Spaces:
Sleeping
Sleeping
Blair Yang
commited on
Commit
·
5264831
1
Parent(s):
e159d95
done api
Browse files- Config.py +24 -0
- __pycache__/Config.cpython-311.pyc +0 -0
- app.py +87 -4
- data/.DS_Store +0 -0
- data/mmlu/response_rec.csv +13 -0
- plot.py +15 -0
- requirements.txt +4 -0
- util.py +14 -0
Config.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DATASETS = [
|
2 |
+
'mmlu',
|
3 |
+
# 'Anthropic_safety_eval'
|
4 |
+
]
|
5 |
+
|
6 |
+
TOPICS = {
|
7 |
+
'mmlu':
|
8 |
+
[
|
9 |
+
# 'high_school_biology',
|
10 |
+
'high_school_physics'
|
11 |
+
],
|
12 |
+
'Anthropic_safety_eval':
|
13 |
+
[
|
14 |
+
'myopia'
|
15 |
+
]
|
16 |
+
}
|
17 |
+
|
18 |
+
MODELS = ['Llama-2-70b-chat-hf',
|
19 |
+
'Llama-2-13b-chat-hf',
|
20 |
+
'Mixtral-8x7B-Instruct-v0.1',
|
21 |
+
'Mistral-7B-Instruct-v0.2'
|
22 |
+
]
|
23 |
+
|
24 |
+
RANDOM_SEED = 42
|
__pycache__/Config.cpython-311.pyc
ADDED
Binary file (472 Bytes). View file
|
|
app.py
CHANGED
@@ -1,7 +1,90 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
def greet(name):
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import plotly.express as px
|
3 |
+
import plotly.graph_objs as go
|
4 |
+
from collections import defaultdict
|
5 |
+
import json, math, gdown
|
6 |
+
import numpy as np
|
7 |
+
import pandas as pd
|
8 |
+
from Config import *
|
9 |
+
pd.options.display.float_format = '{:.2f}'.format
|
10 |
|
|
|
|
|
11 |
|
12 |
+
battles = np.linspace(0, 100, 100)
|
13 |
+
|
14 |
+
meta_topics = ['mmlu']
|
15 |
+
|
16 |
+
def generate_plot(meta_index, topic_index):
|
17 |
+
"""
|
18 |
+
Bar plot of a specific dataset
|
19 |
+
"""
|
20 |
+
# battles = np.linspace(0, 100, 100)
|
21 |
+
meta_topic = meta_topics[meta_index]
|
22 |
+
print(meta_topic)
|
23 |
+
topic = TOPICS[meta_topic][topic_index]
|
24 |
+
|
25 |
+
data = pd.read_csv(f"data/{meta_topic}/response_rec.csv", sep=",")
|
26 |
+
|
27 |
+
topic_data = data[data['sub_topic'] == topic]
|
28 |
+
|
29 |
+
# Compute human and llm accuracy
|
30 |
+
topic_data['human_acc'] = topic_data['no_correct_human'] / topic_data['no_responses_human'].replace(0, np.nan)
|
31 |
+
topic_data['llm_acc'] = topic_data['no_correct_llm'] / topic_data['no_responses_llm'].replace(0, np.nan)
|
32 |
+
|
33 |
+
# Calculate mean and standard deviation for the sample data
|
34 |
+
mean_data = topic_data.groupby('model_name').mean().reset_index()
|
35 |
+
std_deviation = topic_data.groupby('model_name').std().reset_index()
|
36 |
+
|
37 |
+
# Prepare the plot data
|
38 |
+
plot_data = []
|
39 |
+
|
40 |
+
# Define a consistent color scheme
|
41 |
+
colors = ['#FFA07A', '#20B2AA', '#778899'] # Light Salmon, Light Sea Green, Light Slate Gray
|
42 |
+
opacities = [0.7, 0.7, 0.7] # Opacity for average bars
|
43 |
+
|
44 |
+
# Add bars with error bars for the averages
|
45 |
+
for acc_type, color, opacity in zip(['oracle_acc', 'human_acc', 'llm_acc'], colors, opacities):
|
46 |
+
plot_data.append(go.Bar(
|
47 |
+
x=mean_data['model_name'],
|
48 |
+
y=mean_data[acc_type],
|
49 |
+
error_y=dict(
|
50 |
+
type='data',
|
51 |
+
array=std_deviation[acc_type],
|
52 |
+
visible=True
|
53 |
+
),
|
54 |
+
name=acc_type.split('_')[0].capitalize(),
|
55 |
+
marker=dict(color=color, opacity=opacity)
|
56 |
+
))
|
57 |
+
|
58 |
+
# Layout
|
59 |
+
layout = go.Layout(
|
60 |
+
title=f"Accuracy for {meta_topic} ({topic})",
|
61 |
+
xaxis=dict(title='Model Name'),
|
62 |
+
yaxis=dict(title='Accuracy'),
|
63 |
+
showlegend=True,
|
64 |
+
legend=dict(title='Accuracy Type'),
|
65 |
+
barmode='group'
|
66 |
+
)
|
67 |
+
|
68 |
+
fig = go.Figure(data=plot_data, layout=layout)
|
69 |
+
return fig
|
70 |
+
|
71 |
+
|
72 |
+
# Gradio interface with grid layout
|
73 |
+
with gr.Blocks() as interface:
|
74 |
+
with gr.Row(): # Row 1
|
75 |
+
plot1 = gr.Plot(generate_plot(0, 0))
|
76 |
+
# plot1.update(inputs=[0, 0])
|
77 |
+
plot2 = gr.Plot(generate_plot(0, 0))
|
78 |
+
# plot2.update(inputs=[0, 1])
|
79 |
+
with gr.Row(): # Row 2
|
80 |
+
plot3 = gr.Plot(generate_plot(0, 0))
|
81 |
+
# plot3.update(inputs=[1, 0])
|
82 |
+
plot4 = gr.Plot(generate_plot(0, 0))
|
83 |
+
# plot4.update(inputs=[1, 1])
|
84 |
+
with gr.Row(): # Row 3
|
85 |
+
plot5 = gr.Plot(generate_plot(0, 0))
|
86 |
+
# plot5.update(inputs=[2, 0])
|
87 |
+
plot6 = gr.Plot(generate_plot(0, 0))
|
88 |
+
# plot6.update(inputs=[2, 1])
|
89 |
+
|
90 |
+
interface.launch()
|
data/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
data/mmlu/response_rec.csv
CHANGED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
sub_topic,model_name,card_idx,no_responses_human,no_correct_human,no_responses_llm,no_correct_llm,oracle_acc
|
2 |
+
high_school_physics,Mixtral-8x7B-Instruct-v0.1,-1,10,8,10,7,0.68
|
3 |
+
high_school_physics,Mixtral-8x7B-Instruct-v0.1,0,6,4,6,3,0.66
|
4 |
+
high_school_physics,Mixtral-8x7B-Instruct-v0.1,1,4,4,4,4,0.7
|
5 |
+
high_school_physics,Mistral-7B-Instruct-v0.2,-1,0,0,0,0,0
|
6 |
+
high_school_physics,Mistral-7B-Instruct-v0.2,0,0,0,0,0,0
|
7 |
+
high_school_physics,Mistral-7B-Instruct-v0.2,1,0,0,0,0,0
|
8 |
+
high_school_biology,Mixtral-8x7B-Instruct-v0.1,-1,10,8,10,7,0.68
|
9 |
+
high_school_biology,Mixtral-8x7B-Instruct-v0.1,0,6,4,6,3,0.66
|
10 |
+
high_school_biology,Mixtral-8x7B-Instruct-v0.1,1,4,4,4,4,0.7
|
11 |
+
high_school_biology,Mistral-7B-Instruct-v0.2,-1,0,0,0,0,0
|
12 |
+
high_school_biology,Mistral-7B-Instruct-v0.2,0,0,0,0,0,0
|
13 |
+
high_school_biology,Mistral-7B-Instruct-v0.2,1,0,0,0,0,0
|
plot.py
CHANGED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import defaultdict
|
2 |
+
import json, math, gdown
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
import plotly.express as px
|
6 |
+
from tqdm import tqdm
|
7 |
+
pd.options.display.float_format = '{:.2f}'.format
|
8 |
+
|
9 |
+
|
10 |
+
battles = np.linspace(0, 100, 100)
|
11 |
+
fig = px.bar(battles,
|
12 |
+
title="Counts of Battle Outcomes", text_auto=True, height=400)
|
13 |
+
fig.update_layout(xaxis_title="Battle Outcome", yaxis_title="Count",
|
14 |
+
showlegend=False)
|
15 |
+
fig.show()
|
requirements.txt
CHANGED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
plotly
|
2 |
+
numpy
|
3 |
+
pandas
|
4 |
+
tqdm
|
util.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
|
3 |
+
def read_data(file_path):
|
4 |
+
"""
|
5 |
+
Read data from a csv file
|
6 |
+
"""
|
7 |
+
return pd.read_csv(file_path, sep=",")
|
8 |
+
|
9 |
+
|
10 |
+
if __name__ == "__main__":
|
11 |
+
file_path = "data/mmlu/response_rec.csv"
|
12 |
+
data = read_data(file_path)
|
13 |
+
high_school_physics = data[data['sub_topic'] == 'high_school_physics']
|
14 |
+
print(high_school_physics.head(5))
|