assignment_1 / app.py
lowannann's picture
Update app.py
15cc14b
#R11142005 紀柔安
import streamlit as st
from twNLP-app.src.views.components.spinner import dowload_ckip_package, download_cwn_drivers
import pandas as pd
import requests
import bs4
from snownlp import SnowNLP
def run_app(ckip_nlp_models, cwn_upgrade) -> None:
# need to download first because CWN packages will first check whether
# there is .cwn_graph folder in the root directory.
download_cwn_drivers(cwn_upgrade)
dowload_ckip_package(ckip_nlp_models)
from views.components.sidebar import visualize_side_bar
from views.containers import display_cwn, display_ckip, display_data_form
st.title("NLP app for PTT")
st.write("這是一個針對PTT語料的 情緒分析|中文NLP管線處理🔎")
st.image("/Users/joannechi/nlpWeb/myApp/nlpweb/nlp_assignment_1/img/Mo-PTT-Logo.png", width=200)
#menu = ["Text","Sentences"]
#choice = st.sidebar.selectbox("Menu",menu)
#spectra = st.file_uploader("upload your file", type={"csv", "txt"})
#if spectra is not None:
# spectra_df = pd.read_csv(spectra) #讀取csv
# st.write(spectra_df)
#~~web crawler~~
st.subheader("PTT Crawler 🐛")
st.text('目前看板有:HatePolitics|Gossiping|Military|Stock')
selected = st.selectbox('請選擇看板:',
['HatePolitics', 'Gossiping','Military','Stock'])
if selected=='HatePolitics':
URL = "https://www.ptt.cc/bbs/HatePolitics/index.html"
elif selected=='Gossiping':
URL = "https://www.ptt.cc/bbs/Gossiping/index.html"
elif selected=='Military':
URL = "https://www.ptt.cc/bbs/Military/index.html"
else:
URL = "https://www.ptt.cc/bbs/Stock/index.html"
my_headers = {'cookie': 'over18=1;'}
response = requests.get(URL, headers = my_headers)
soup = bs4.BeautifulSoup(response.text,"html.parser")
list_results=[]
for t in soup.find_all('div','title'):
find_a=t.find('a')
find_href="https://www.ptt.cc"+find_a.get("href")
title=t.text
results={
"title":title,
"url":find_href
}
list_results.append(results)
my_df=pd.DataFrame(list_results)
print(my_df)
st.write(my_df)
#~~web crawler~~
#~~sentiment analysis~~
st.subheader("情緒分析")
with st.form(key="nlpForm"):
raw_text=st.text_area("請輸入句子✏️")
submit_button=st.form_submit_button(label="確定")
if submit_button:
st.info("sentiment")
sentiment=SnowNLP(SnowNLP(raw_text).han) #轉簡體
sentiment_han=sentiment.sentiments
st.write(sentiment_han)
#emoji
if sentiment_han>0:
st.markdown("Sentiment:: Positive :smiley: ")
elif sentiment_han<0:
st.markdown("Sentiment:: Negative :angry: ")
else:
st.markdown("Sentiment:: Neutral :neutral: ")
#with col2:
#st.info("category")
#category=SnowNLP(SnowNLP(raw_text).han) #轉簡體
#category_han=list(category.tags)
#st.write(category_han)
#~~sentiment analysis~~
st.subheader("中文 NLP 管線處理")
input_data = display_data_form()
model, pipeline, active_visualizers = visualize_side_bar(ckip_nlp_models)
#return model_options, pipeline_options, active_visualizers
display_factories = {"CKIP": display_ckip, "CWN": display_cwn}
if "input_data" in st.session_state:
display_factories[pipeline](
model, active_visualizers, st.session_state["input_data"]
)
if __name__ == "__main__":
ckip_nlp_models = ["bert-base", "albert-tiny", "bert-tiny", "albert-base"]
run_app(ckip_nlp_models, cwn_upgrade=False)