Spaces:
Runtime error
Runtime error
File size: 24,391 Bytes
b6af401 e334be7 8c65dfe 8170b82 5dc6b6c b6af401 e334be7 b6af401 5dc6b6c 8fe1e33 5d9f0d7 5dc6b6c b6af401 5dc6b6c b6af401 41e5416 b6af401 41e5416 e334be7 41e5416 e334be7 41e5416 b6af401 41e5416 b6af401 41e5416 b6af401 8fe1e33 5d9f0d7 8fe1e33 5d9f0d7 8fe1e33 80f61b7 e334be7 41e5416 b6af401 41e5416 b6af401 e334be7 b6af401 e334be7 b6af401 41e5416 b6af401 e334be7 41e5416 b6af401 41e5416 b6af401 41e5416 b6af401 5dc6b6c b6af401 5d9f0d7 b6af401 41e5416 5d9f0d7 b6af401 e334be7 41e5416 e334be7 4d4bb80 e334be7 5d9f0d7 e334be7 5d9f0d7 e334be7 5d9f0d7 e334be7 b6af401 5d9f0d7 045990a b6af401 045990a b6af401 e334be7 41e5416 b6af401 41e5416 e334be7 045990a b6af401 045990a b6af401 045990a 41e5416 045990a 8fe1e33 41e5416 045990a 41e5416 80f61b7 660607d 045990a 41e5416 b6af401 5dc6b6c b6af401 045990a 8c65dfe 045990a 41e5416 8c65dfe 045990a 8c65dfe 045990a b6af401 8fe1e33 b6af401 8170b82 b6af401 8c65dfe b6af401 5dc6b6c b6af401 5dc6b6c 8170b82 b6af401 5dc6b6c b6af401 41e5416 b6af401 41e5416 8170b82 b6af401 8170b82 41e5416 b6af401 8fe1e33 b6af401 80f61b7 b6af401 41e5416 b6af401 41e5416 8170b82 b6af401 41e5416 b6af401 5dc6b6c 41e5416 8c65dfe 8fe1e33 8c65dfe 8fe1e33 5dc6b6c 8fe1e33 8c65dfe b6af401 41e5416 b6af401 8fe1e33 41e5416 8fe1e33 8c65dfe b6af401 5dc6b6c 41e5416 b6af401 5dc6b6c 41e5416 b6af401 8fe1e33 b6af401 8fe1e33 5dc6b6c 8fe1e33 5dc6b6c 8fe1e33 80f61b7 8fe1e33 5dc6b6c 80f61b7 8fe1e33 80f61b7 8fe1e33 5dc6b6c 80f61b7 660607d 5dc6b6c 80f61b7 5dc6b6c 80f61b7 5dc6b6c 80f61b7 660607d 80f61b7 5dc6b6c 80f61b7 5dc6b6c 80f61b7 660607d 80f61b7 5dc6b6c 8fe1e33 b6af401 b0b3685 5dc6b6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 |
from ast import arg
import streamlit as st
import pandas as pd
import PIL
from urlextract import URLExtract
import time
from utils import *
# from joblib import dump, load
import joblib
from bokeh.models.widgets import Div
import email
import os
#from ipyfilechooser import FileChooser
#from IPython.display import display
from bs4 import BeautifulSoup
import matplotlib.pyplot as plt
import numpy as np
import timeit
import shutil
CURRENT_THEME = "blue"
IS_DARK_THEME = True
def table_data():
# creating table data
field = [
'Data Scientist',
'Dataset',
'Algorithm',
'Framework',
'Ensemble',
'Domain',
'Model Size'
]
data = [
'Chen Song',
'Internal + Campaign monitor',
'Random Forest',
'Sci-kit learn',
'Bootstrapping',
'Bootstrapping Aggregation',
'4 KB'
]
data = {
'Field': field,
'Data': data
}
df = pd.DataFrame.from_dict(data)
return df
def url_button(button_name, url):
if st.button(button_name):
js = """window.open('{url}')""".format(url=url) # New tab or window
html = '<img src onerror="{}">'.format(js)
div = Div(text=html)
st.bokeh_chart(div)
def get_industry_code_dict(training_dataset):
training_dataset['industry_code'] = training_dataset['industry'].astype(
'category')
cat_columns = training_dataset.select_dtypes(['category']).columns
training_dataset[cat_columns] = training_dataset[cat_columns].apply(
lambda x: x.cat.codes)
industry_code_dict = dict(
zip(training_dataset.industry, training_dataset.industry_code))
return industry_code_dict
def parse_email(uploaded_file):
parsed_email = []
efile = open(uploaded_file.name,'r')
emailstr = ""
for i, line in enumerate(efile):
emailstr += line
b = email.message_from_string(emailstr)
for part in b.walk():
if part.get_content_type():
body = str(part.get_payload())
soup = BeautifulSoup(body)
paragraphs = soup.find_all('body')
for paragraph in paragraphs:
parsed_email.append(paragraph.text)
return parsed_email
#def email_upload():
# print("Please upload your email (In HTML Format)")
# upload = FileUpload(accept='.html', multiple=True)
# display(upload)
# return upload
# fc = FileChooser()
# display(fc)
# return fc
# New - In-Use
def email_extractor(email_uploaded):
parse = parse_email(email_uploaded)
email_text = ''.join(parse).strip()
# extract the email body using string manipulation functions
email_body_start_index = email_text.find('Bright Apps LLC')
email_body_end_index = email_text.find('To read more')
email_body = email_text[email_body_start_index:email_body_end_index].strip()
# get rid of non-text elements
email_body = email_body.replace('\n', '')
email_body = email_body.replace('\t', '')
email_body = email_body.replace('\r', '')
email_body = email_body.replace('</b>', '')
email_body = email_body.replace('<b>', '')
email_body = email_body.replace('\xa0', '')
# find length of URLs if any
extractor = URLExtract()
urls = extractor.find_urls(email_body)
url_cnt = len(urls)
# remove URLs and get character count
body = re.sub(r'\w+:\/{2}[\d\w-]+(\.[\d\w-]+)*(?:(?:\/[^\s/]*))*', '', email_body)
sep = '©'
body = body.split(sep, 1)[0]
character_cnt = sum(not chr.isspace() for chr in body)
return email_body, character_cnt, url_cnt
def email_extractor_general(email_uploaded):
parse = parse_email(email_uploaded)
email_text = ''.join(parse).strip()
# get rid of non-text elements
email_text = email_text.replace('\n', '')
email_text = email_text.replace('\t', '')
email_text = email_text.replace('\r', '')
email_text = email_text.replace('</b>', '')
email_text = email_text.replace('<b>', '')
email_text = email_text.replace('\xa0', '')
# find length of URLs if any
extractor = URLExtract()
urls = extractor.find_urls(email_text)
url_cnt = len(urls)
# remove URLs and get character count
body = re.sub(r'\w+:\/{2}[\d\w-]+(\.[\d\w-]+)*(?:(?:\/[^\s/]*))*', '', email_text)
sep = '©'
body = body.split(sep, 1)[0]
character_cnt = sum(not chr.isspace() for chr in body)
return email_text, character_cnt, url_cnt
# extract email body from parse email
def email_body_extractor(email_data):
# email_data = parsed_email.data[0]
emailstr = email_data.decode("utf-8")
b = email.message_from_string(emailstr)
body = ""
if b.is_multipart():
for part in b.walk():
ctype = part.get_content_type()
cdispo = str(part.get('Content-Disposition'))
# skip any text/plain (txt) attachments
if ctype == 'text/plain' and 'attachment' not in cdispo:
body = part.get_payload() # decode
break
# not multipart - i.e. plain text, no attachments, keeping fingers crossed
else:
body = b.get_payload()
# Remove escape sequences
body = body.replace('\n', '')
body = body.replace('\t', '')
body = body.replace('\r', '')
body = body.replace('</b>', '')
body = body.replace('<b>', '')
# Extract urls in the email body and get url counts
extractor = URLExtract()
urls = extractor.find_urls(body)
url_cnt = len(urls)
# Remove urls
body = re.sub(
r'\w+:\/{2}[\d\w-]+(\.[\d\w-]+)*(?:(?:\/[^\s/]*))*', '', body)
sep = '©'
body = body.split(sep, 1)[0]
character_cnt = sum(not chr.isspace() for chr in body)
return body, character_cnt, url_cnt
def add_bg_from_url():
st.markdown(
f"""
<style>
.stApp {{
background-image: linear-gradient(135deg,#061c2c,#084e69 35%,#3e7e89);
background-attachment: fixed;
background-size: cover
}}
</style>
""",
unsafe_allow_html=True
)
add_bg_from_url()
#linear-gradient(0deg,#010405 0,#061c2c 55%,#0a3144 75%,#0f4d60)
st.markdown("# Character Count: Email Industry")
stats_col1, stats_col2, stats_col3, stats_col4 = st.columns([1, 1, 1, 1])
with stats_col1:
st.caption("Production: Ready")
with stats_col2:
st.caption("Accuracy: 85%")
with stats_col3:
st.caption("Speed: 16.89 ms")
with stats_col4:
st.caption("Industry: Email")
with st.sidebar:
with st.expander('Model Description', expanded=False):
img = PIL.Image.open("figures/ModelCC.png")
st.image(img)
st.markdown('Finding the correct length for an email campaign to maximize user engagement can be an ambiguous task. The Loxz Character Count Model allows you to predict the correct length of your emails for a particular industry and a particular type of email. Using these inputs and trained on an extensive proprietary data set from the Loxz family digital archive, the models incorporate real-world and synthetic data to find the optimized character counts. We applied the random forest algorithm in this model. Bootstrapping was also ensembled in the algorithm which effectively prevents overfitting by reducing variance. The model achieves an 86% accuracy on the test set. This inference-based ML model will help the campaign engineers start with an acceptable length and zero in on the best character count, maximizing engagement in their campaign.')
with st.expander('Model Information', expanded=False):
hide_table_row_index = """
<style>
thead tr th:first-child {display:none}
tbody th {display:none}
</style>
"""
st.markdown(hide_table_row_index, unsafe_allow_html=True)
st.table(table_data())
url_button('Model Homepage', 'https://www.loxz.com/#/models/CTA')
# url_button('Full Report','https://resources.loxz.com/reports/realtime-ml-character-count-model')
url_button('Amazon Market Place', 'https://aws.amazon.com/marketplace')
industry_lists = [
'Retail',
'Software and Technology',
'Hospitality',
'Academic and Education',
'Healthcare',
'Energy',
'Real Estate',
'Entertainment',
'Finance and Banking'
]
campaign_types = [
'Promotional',
'Transactional',
'Webinar',
'Survey',
'Newsletter',
'Engagement',
'Usage_and_Consumption',
'Review_Request',
'Product_Announcement',
'Abandoned_Cart'
]
target_variables = [
'conversion_rate',
'click_to_open_rate',
# 'Bounce Rate',
# 'Spam Complaint Rate',
# 'AOV',
# 'CLV',
# 'ROI',
# 'NPS',
# 'CAC',
# 'Abandonment Rate',
# 'Site Traffic',
# 'Product Return Rate',
# 'Net Profit Margin',
# 'MRR',
# 'ARR',
# 'Churn',
# 'ARPU',
# 'Retention Rate',
# 'Unsubscribe Rate',
# 'Email ROI'
]
uploaded_file = st.file_uploader(
"Please upload your email (In HTML Format)", type=["html"])
def save_file(uploaded_file):
with open(os.path.join("./",uploaded_file.name),"wb") as f:
f.write(uploaded_file.getbuffer())
if uploaded_file is None:
# upload_img = PIL.Image.open(uploaded_file)
upload_img = None
# else:
# upload_img = None
industry = st.selectbox(
'Please select your industry',
industry_lists,
index=6
)
campaign = st.selectbox(
'Please select your campaign type',
campaign_types,
index=5
)
target = st.selectbox(
'Please select your target variable',
target_variables,
index=1
)
st.markdown("""---""")
#char_reco_preference = st.selectbox(
# 'Do you want to increase or decrease your character count in the email?',
# ["Increase", "Decrease"],
# index=1)
# st.info([industry,campaign,target,char_reco_preference])
act=st.button('Generate Predictions')
if st.session_state.get('button') != True:
st.session_state['button'] = act
# if act:
if st.session_state.get('button') == True:
start_time = time.time()
if uploaded_file is None:
st.error('Please upload a email (HTML format)')
else:
save_file(uploaded_file)
placeholder = st.empty()
placeholder.text('Loading Data')
# Starting predictions
model = joblib.load('models/models.sav')
# Generate Email Data
email_data = get_files_from_aws(
'emailcampaigntrainingdata', 'trainingdata/email_dataset_training.csv')
acc_data = get_files_from_aws(
'emailcampaigntrainingdata', 'trainingdata/email_dataset_training_raw.csv')
email_data_ = email_data[["email_body", "industry", "campaign_type",
"character_cnt", "url_cnt", "Open_Rate", "Click_Through_Rate"]]
email_data_ = email_data_.rename(
{'Open_Rate': 'Click-to-open_Rate', 'Click_Through_Rate': 'Conversion_Rate'})
df_email_data = email_data_.rename(
columns={'Open_Rate': 'Click-to-open_Rate', 'Click_Through_Rate': 'Conversion_Rate'})
# Dataset:
training_dataset = get_files_from_aws(
'emailcampaigntrainingdata', 'modelCC/training.csv')
# X_test = get_files_from_aws('emailcampaigntrainingdata','modelCC/Xtest.csv')
# Y_test = get_files_from_aws('emailcampaigntrainingdata','modelCC/ytest.csv')
# print("Getting Data Time: %s seconds" % (time.time() - start_time))
industry_code_dict = get_industry_code_dict(email_data)
#uploaded_file = FileChooser(uploaded_file)
#bytes_data = uploaded_file.getvalue()
email_body, character_cnt, url_cnt = email_extractor_general(uploaded_file)
# Start the prediction
# Need to solve X test issue
# y_pred = model.predict(X_test)
df_uploaded = pd.DataFrame(
columns=['character_cnt', "url_cnt", "industry"])
df_uploaded.loc[0] = [character_cnt, url_cnt, industry]
df_uploaded["industry_code"] = industry_code_dict.get(industry)
df_uploaded_test = df_uploaded[[
"industry_code", "character_cnt", "url_cnt"]]
predicted_rate = model.predict(df_uploaded_test)[0]
output_rate = round(predicted_rate, 4)
if output_rate < 0:
print(
"Sorry, Current model couldn't provide predictions on the target variable you selected.")
else:
st.markdown('##### Current Character Count in Your Email is: <span style="color:yellow">{}</span>'.format(
character_cnt), unsafe_allow_html=True)
# st.info('The model predicts that it achieves a {} of {}%'.format(target, str(round(output_rate*100,2))))
if target == 'conversion_rate':
target_vis = 'Click_Through_Rate'
else:
target_vis = 'Open_Rate'
st.markdown('##### The model predicts that it achieves a <span style="color:yellow">{}</span> of <span style="color:yellow">{}</span>%'.format(
target_vis, str(round(output_rate*100, 3))), unsafe_allow_html=True)
selected_industry_code = industry_code_dict.get(industry)
if target == "click_to_open_rate":
selected_variable = "Open_Rate"
if target == "conversion_rate":
selected_variable = "Click_Through_Rate"
df_reco = training_dataset[[
"industry_code", "character_cnt", "url_cnt", selected_variable]]
df_reco = df_reco[df_reco["industry_code"]
== selected_industry_code]
df_reco[selected_variable] = df_reco[selected_variable].apply(
lambda x: round(x, 3))
df_reco_sort = df_reco.sort_values(by=[selected_variable])
df_reco = df_reco.drop_duplicates(subset=selected_variable)
#preference = char_reco_preference
#if preference == "Increase":
# df_reco_opt = df_reco[(df_reco[selected_variable] > output_rate) & (
# df_reco["character_cnt"] > character_cnt) & (df_reco["character_cnt"] <= (1.5*character_cnt))]
# df_reco_opt_rank = df_reco_opt.nlargest(3, [selected_variable])
# decrease character reco
#if preference == "Decrease":
# df_reco_opt = df_reco[(df_reco[selected_variable] > output_rate) & (
# df_reco["character_cnt"] < character_cnt)]
# df_reco_opt_rank = df_reco_opt.nlargest(3, [selected_variable])
# split into two dataframes of higher and lower character_cnt (added apr 2023)
char_cnt_uploaded = character_cnt
df_reco_opt1 = df_reco[(df_reco[selected_variable] > output_rate) & (df_reco["character_cnt"] > char_cnt_uploaded) & (df_reco["character_cnt"] <= (1.5*char_cnt_uploaded))]
df_reco_opt2 = df_reco[(df_reco[selected_variable] > output_rate) & (df_reco["character_cnt"] < char_cnt_uploaded) & (df_reco["character_cnt"] >= (char_cnt_uploaded/2))]
# drop duplicates of character_cnt keeping the row with the highest output_rate
df_reco_opt1 = df_reco_opt1.sort_values(by=[selected_variable], ascending=False).drop_duplicates(subset=["character_cnt"])
df_reco_opt2 = df_reco_opt2.sort_values(by=[selected_variable], ascending=False).drop_duplicates(subset=["character_cnt"])
# get top 2 largest in higher and lower dataframe
df_reco_opt_rank1 = df_reco_opt1.nlargest(2, [selected_variable])
df_reco_opt_rank2 = df_reco_opt2.nlargest(2, [selected_variable])
df_reco_opt_rank = pd.concat([df_reco_opt_rank1, df_reco_opt_rank2])
df_reco_opt_rank = df_reco_opt_rank.nlargest(3,[selected_variable])
if selected_variable == "Open_Rate":
selected_variable = "Click-to-Open_Rate"
if selected_variable == "Click_Through_Rate":
selected_variable = "Conversion_Rate"
st.markdown('##### To get higher, <span style="color:yellow">{}</span>, the model recommends the following options:'.format(
selected_variable), unsafe_allow_html=True)
if len(df_reco_opt_rank) == 0:
st.markdown('##### You ve already achieved the highest, <span style="color:yellow">{}</span>, with the current character count!'.format(
selected_variable), unsafe_allow_html=True)
else:
#for _, row in df_reco_opt_rank.iterrows():
# Character_Count = row[1]
# selected_variable = row[3]
# print(f"·Number of Characters: {int(Character_Count)}, Target Rate: {round(selected_variable, 3)*100}", "%")
# st.markdown('Number of Characters: {}, Target Rate: {}'.format(
# int(Character_Count), round(selected_variable*100, 3)))
chars = []
sel_var_values = []
for _, row in df_reco_opt_rank.iterrows():
Character_Count = row[1]
selected_variable_number = row[3]
chars.append(int(Character_Count))
sel_var_values.append(round(selected_variable_number, 3)*100)
# st.write(f"·Number of Characters: {int(Character_Count)}, Target Rate: {round(round(selected_variable_number, 3)*100, 3)}", "%")
st.write("\n")
df_modelpred=pd.DataFrame(list(zip(chars, sel_var_values)), columns=["Number of Characters", "Target_Rate"])
# st.checkbox("Use container width", value=False, key="use_container_width")
# st.dataframe(df_modelpred.style.highlight_max(axis=0), use_container_width=st.session_state.use_container_width)
df_modelpred.sort_values(by='Target_Rate', ascending=False, inplace = True)
st.dataframe(df_modelpred)
if len(chars) > 1:
#fig = plt.figure()
#ax = fig.add_axes([0,0,1,1])
fig, ax = plt.subplots(figsize=(10,4))
bars = ax.barh(np.arange(len(chars)), sel_var_values, height=0.175, color='#0F4D60')
#ax.bar_label(bars)
ax.tick_params(colors='w', which='both')
ax.set_yticks(np.arange(len(chars)))
ax.set_yticklabels(tuple(chars), fontsize=14)
ax.set_title('Character Counts vs. Target Variable Rates', fontsize=18, color='y')
ax.set_ylabel('Character Counts', fontsize=16, color='y')
ax.set_xlabel('Target Rates %', fontsize=16, color='y')
for i, bar in enumerate(bars):
rounded_value = round(sel_var_values[i], 2)
ax.text(bar.get_width() + 0.3, bar.get_y() + bar.get_height()/2, str(rounded_value) + '%', ha='left', va='center', fontsize=12, fontweight='bold', color='y')
ax.margins(0.1,0.05)
biggest_bar_index = np.argmax(sel_var_values)
bars[biggest_bar_index].set_color('#00BF93')
st.plotly_chart(fig, use_container_width=True)
# st.write("\n")
chars_out = dict(zip(chars, sel_var_values))
sorted_chars_out = sorted(chars_out.items(), key=lambda x: x[1], reverse=True)
prefrence_variables=["charcter counts: "+str(x)+", Target Rate: "+str(y) for x,y in zip(chars,sel_var_values)]
# prefrence_variables=[None]+prefrence_variables
preference = st.selectbox(
'Please select your preferences for target metric',
prefrence_variables,
index=0
)
options = st.multiselect(
'Select prompts you want to use to generate your email:',
["Convey key message in fewer words",
"Rephrase sentences to be more concise",
"Remove unnecessary details/repetitions",
"Use bullet points or numbered lists",
"Include clear call-to-action in the email",
"Link to information instead of writing it out",
"Shorten the subject line",
"Replace technical terms with simpler language"],
None)
# st.markdown('preference: {}, len preference: '.format(preference, len(preference)),unsafe_allow_html=True)
st.markdown('options: {}'.format(options),unsafe_allow_html=True)
if st.button('Generate AI Recommended Email'):
if(preference is None and options is None):
st.error('Please select your preferences.')
else:
stats_col1, stats_col2, stats_col3, stats_col4 = st.columns([1, 1, 1, 1])
with stats_col1:
st.caption("Production: Ready")
with stats_col2:
st.caption("Accuracy: 85%")
with stats_col3:
st.caption("Speed: 16.89 ms")
with stats_col4:
st.caption("Industry: Email")
if(options==None):
if(preference):
ai_generated_email=generate_example_email_with_context(email_body, campaign, industry, target, sorted_chars_out, preference)
st.markdown('##### Here is the recommended Generated Email for you:')
with st.expander('', expanded=True):
st.markdown('{}'.format(ai_generated_email),unsafe_allow_html=True)
else:
email_body_opt=email_body
if(preference is not ''):
# st.markdown('##### preference is selected')
ai_generated_email=generate_example_email_with_context(email_body, campaign, industry, target, sorted_chars_out, preference)
email_body_opt=ai_generated_email
optimized_email, optimized_char_cnt, optimized_url_cnt = optimize_email_prompt_multi(email_body_opt, options)
charc, tmval=get_optimized_prediction("sagemakermodelcc", "modelCC.sav", "sagemakermodelcc", target, industry,
optimized_char_cnt, optimized_url_cnt, industry_code_dict)
st.markdown('##### Current Character Count in Your Optimized Email is: <span style="color:yellow">{}</span>'.format(charc), unsafe_allow_html=True)
st.markdown('##### The model predicts that it achieves a <span style="color:yellow">{}</span> of <span style="color:yellow">{}</span>%'.format(target,tmval), unsafe_allow_html=True)
st.markdown('##### Here is the recommended Generated Email for you:')
with st.expander('', expanded=True):
st.markdown('{}'.format(optimized_email),unsafe_allow_html=True)
# st.session_state['button'] = False
# preference= "character counts: "+str(573)+", Target Rate: "+str(37.2)
# ai_generated_email=generate_example_email_with_context(email_body, campaign, industry, target, sorted_chars_out, preference)
# print("ai_generated_email: ",ai_generated_email)
# st.markdown('##### Here is the recommended Generated Email for you:')
# st.markdown('####### {}'.format(ai_generated_email),unsafe_allow_html=True)
#st.write(np.array(chars))
# chars_out = dict(zip(chars, sel_var_values))
# sorted_chars_out = sorted(chars_out.items(), key=lambda x: x[1], reverse=True)
# placeholder.empty()
#st.write(time.time() - start_time) |