Spaces:
Runtime error
Runtime error
Duy-Anh Dang
commited on
Commit
·
86ea239
1
Parent(s):
33f7765
app version 1.2
Browse files
app.py
CHANGED
@@ -1,13 +1,45 @@
|
|
1 |
from ast import arg
|
2 |
import FunctionsModelSA_V1
|
|
|
3 |
import streamlit as st
|
4 |
import pandas as pd
|
5 |
import PIL
|
6 |
import time
|
7 |
-
import streamlit_analytics
|
8 |
|
9 |
import main_app
|
10 |
import utils
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
def table_data():
|
13 |
# creating table data
|
@@ -58,7 +90,7 @@ def add_bg_from_url():
|
|
58 |
|
59 |
# add_bg_from_url()
|
60 |
|
61 |
-
st.markdown("
|
62 |
|
63 |
stats_col1, stats_col2, stats_col3, stats_col4 = st.columns([1,1,1,1])
|
64 |
|
@@ -108,59 +140,146 @@ campaign_types = ['Webinar', 'Engagement', 'Product_Announcement', 'Promotional'
|
|
108 |
|
109 |
target_variables = ['Conversion_Rate','Click_To_Open_Rate','Revenue_Per_Email']
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
industry = st.selectbox(
|
117 |
-
'Please select your industry',
|
118 |
-
industry_lists,
|
119 |
-
index=6
|
120 |
)
|
|
|
121 |
|
122 |
-
|
123 |
-
'
|
124 |
-
|
125 |
-
index=5
|
126 |
)
|
|
|
127 |
|
128 |
-
|
129 |
-
'
|
130 |
-
|
131 |
-
index=1
|
132 |
)
|
|
|
133 |
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from ast import arg
|
2 |
import FunctionsModelSA_V1
|
3 |
+
import numpy as np
|
4 |
import streamlit as st
|
5 |
import pandas as pd
|
6 |
import PIL
|
7 |
import time
|
|
|
8 |
|
9 |
import main_app
|
10 |
import utils
|
11 |
+
import s3fs
|
12 |
+
from colour import Color
|
13 |
+
import plotly.graph_objects as go
|
14 |
+
from nltk import tokenize
|
15 |
+
from IPython.display import Markdown
|
16 |
+
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
|
17 |
+
import nltk
|
18 |
+
nltk.download('punkt')
|
19 |
+
import email
|
20 |
+
import codecs
|
21 |
+
import pickle
|
22 |
+
import string
|
23 |
+
from scipy import spatial
|
24 |
+
import re
|
25 |
+
import pytorch_lightning as pl
|
26 |
+
from bs4 import BeautifulSoup
|
27 |
+
import ipywidgets as widgets
|
28 |
+
from ipywidgets import FileUpload
|
29 |
+
from urlextract import URLExtract
|
30 |
+
from transformers import BertTokenizerFast as BertTokenizer, BertModel, BertConfig
|
31 |
+
import torch.nn as nn
|
32 |
+
import torch
|
33 |
+
from ipywidgets import interact, Dropdown
|
34 |
+
import boto3
|
35 |
+
from sagemaker import get_execution_role
|
36 |
+
from scipy import spatial
|
37 |
+
from ipyfilechooser import FileChooser
|
38 |
+
import random
|
39 |
+
import streamlit_analytics
|
40 |
+
|
41 |
+
from FunctionsModelSA_V1 import *
|
42 |
+
#from model_V1 import *
|
43 |
|
44 |
def table_data():
|
45 |
# creating table data
|
|
|
90 |
|
91 |
# add_bg_from_url()
|
92 |
|
93 |
+
st.markdown("#### Sentiment Analysis: Email Industry v1.2")
|
94 |
|
95 |
stats_col1, stats_col2, stats_col3, stats_col4 = st.columns([1,1,1,1])
|
96 |
|
|
|
140 |
|
141 |
target_variables = ['Conversion_Rate','Click_To_Open_Rate','Revenue_Per_Email']
|
142 |
|
143 |
+
region_variables = ['Africa', 'America', 'Asia', 'Europe', 'Oceania']
|
144 |
+
|
145 |
+
input_text = st.text_area("Please enter your email text here: ", height=50)
|
146 |
+
|
147 |
+
with st.expander('Please select your parameters: '):
|
148 |
+
with streamlit_analytics.track('test123'):
|
149 |
+
industry = st.selectbox(
|
150 |
+
'Please select your industry',
|
151 |
+
industry_lists,
|
152 |
+
index=6
|
153 |
+
)
|
154 |
+
|
155 |
+
target = st.selectbox(
|
156 |
+
'Please select your target variable',
|
157 |
+
target_variables,
|
158 |
+
index=1
|
159 |
+
)
|
160 |
+
|
161 |
+
campaign = st.selectbox(
|
162 |
+
'Please select your campaign type',
|
163 |
+
campaign_types,
|
164 |
+
index=7
|
165 |
+
)
|
166 |
+
|
167 |
+
region = st.selectbox(
|
168 |
+
'Select your target region to generate the email with a more appropriate tone:',
|
169 |
+
region_variables,
|
170 |
+
index=1
|
171 |
+
)
|
172 |
+
|
173 |
+
|
174 |
+
with st.expander('Adjust your tone intensities for your preference: '):
|
175 |
+
#'Joyful', 'Confident', 'Urgent', 'Friendly', 'Optimistic', 'Analytical', 'Casual'
|
176 |
+
joyful_tone_value = st.slider(
|
177 |
+
'Joyful: ',
|
178 |
+
value = 0
|
179 |
+
)
|
180 |
+
st.write('Joyful: ', joyful_tone_value)
|
181 |
|
182 |
+
confident_tone_value = st.slider(
|
183 |
+
'Confident: ',
|
184 |
+
value = 0
|
185 |
+
)
|
186 |
+
st.write('Confident: ', confident_tone_value)
|
187 |
|
188 |
+
urgent_tone_value = st.slider(
|
189 |
+
'Urgent: ',
|
190 |
+
value = 0
|
|
|
|
|
|
|
|
|
191 |
)
|
192 |
+
st.write('Urgent: ', urgent_tone_value)
|
193 |
|
194 |
+
friendly_tone_value = st.slider(
|
195 |
+
'Friendly: ',
|
196 |
+
value = 0
|
|
|
197 |
)
|
198 |
+
st.write('Friendly: ', friendly_tone_value)
|
199 |
|
200 |
+
optimistic_tone_value = st.slider(
|
201 |
+
'Optimistic: ',
|
202 |
+
value = 0
|
|
|
203 |
)
|
204 |
+
st.write('Optimistic: ', optimistic_tone_value)
|
205 |
|
206 |
+
analytical_tone_value = st.slider(
|
207 |
+
'Analytical: ',
|
208 |
+
value = 0
|
209 |
+
)
|
210 |
+
st.write('Analytical: ', analytical_tone_value)
|
211 |
|
212 |
+
casual_tone_value = st.slider(
|
213 |
+
'Casual: ',
|
214 |
+
value = 0
|
215 |
+
)
|
216 |
+
st.write('Casual: ', casual_tone_value)
|
217 |
+
|
218 |
+
Loxz_recom_box = st.checkbox('Select Loxz Recommended Tones for Optimal Output')
|
219 |
+
|
220 |
+
if st.button('Generate Predictions'):
|
221 |
+
start_time = time.time()
|
222 |
+
if input_text == "":
|
223 |
+
st.error('Please enter a sentence!')
|
224 |
+
else:
|
225 |
+
placeholder = st.empty()
|
226 |
+
placeholder.text('Loading Data...')
|
227 |
+
|
228 |
+
# Starting predictions
|
229 |
+
#bucket='emailcampaignmodeldata'
|
230 |
+
# file_key = 'fullEmailBody/fullemailtextbody_labeled_3rates_8tones_20220524.csv'
|
231 |
+
|
232 |
+
# email_data = utils.get_files_from_aws(bucket,file_key)
|
233 |
+
#tone_key = 'ModelSADataSets/Tone_and_target.csv'
|
234 |
+
#tone_data = FunctionsModelSA_V1.load_data(bucket,tone_key)
|
235 |
+
tone_data = FunctionsModelSA_V1.load_data()
|
236 |
+
test_predictions,tones = FunctionsModelSA_V1.convert_text_to_tone(input_text)
|
237 |
+
|
238 |
+
# st.dataframe(test_predictions)
|
239 |
+
# st.dataframe(tones)
|
240 |
+
campaign_val='campaign_type_'+ campaign
|
241 |
+
industry_val='industry_'+ industry
|
242 |
+
pred,lower,upper,model = FunctionsModelSA_V1.prediction(tones,campaign_val,industry_val,target)
|
243 |
+
worst_target,best_target,best_target_tones = FunctionsModelSA_V1.find_max_cat(tone_data,target,industry_val,campaign_val)
|
244 |
+
#best_target, best_target_tones
|
245 |
+
#FunctionsModelSA_V1.plot_CI(pred,lower,upper)
|
246 |
+
st.write('The Predicted Value is ' + str(pred))
|
247 |
+
fig1 = go.Figure(go.Bar(
|
248 |
+
name = 'Tone Levels',
|
249 |
+
x=[joyful_tone_value, confident_tone_value, urgent_tone_value, friendly_tone_value, optimistic_tone_value, analytical_tone_value, casual_tone_value],
|
250 |
+
y=['Joyful', 'Confident', 'Urgent', 'Friendly', 'Optimistic', 'Analytical', 'Casual'],
|
251 |
+
orientation='h')
|
252 |
+
)
|
253 |
+
st.plotly_chart(fig1, use_container_width=True)
|
254 |
+
|
255 |
+
#if((best_target!=0) and (pred<best_target)):
|
256 |
+
if Loxz_recom_box == True:
|
257 |
+
recommended_changes=(best_target_tones)
|
258 |
+
change=best_target-pred
|
259 |
+
#recommend(tones,recommended_changes,change,target)
|
260 |
+
fig2 = go.Figure()
|
261 |
+
fig2.add_trace(go.Bar(
|
262 |
+
y=tone_labels,
|
263 |
+
x=recommended_changes,
|
264 |
+
name='Recommend changes',
|
265 |
+
orientation='h',
|
266 |
+
text=np.round(recommended_changes,3),
|
267 |
+
width=.5,
|
268 |
+
marker=dict(
|
269 |
+
color='#e60f00',
|
270 |
+
line=dict(color='rgba(58, 71, 80, 1.0)', width=1)))
|
271 |
+
)
|
272 |
+
fig2.update_traces(textfont_size=18, textposition="outside", cliponaxis=False)
|
273 |
+
if target == 'Revenue_Per_Email':
|
274 |
+
out = f"${round(change,2)}"
|
275 |
+
st.write("The output will be between the range " + str(round(lower,2)) + ' and ' + str(round(upper,2)))
|
276 |
+
st.write("The Predicted "+str(target) +" is "+ str(round(pred,2)))
|
277 |
+
else:
|
278 |
+
out = f"{round(change,2)*100}%"
|
279 |
+
st.write("The output will be between the range " + str(round(lower,2) * 100) + ' and ' + str(round(upper,2) *100))
|
280 |
+
st.write("The Predicted "+str(target) +" is "+ str(round(pred,2)*100))
|
281 |
+
fig2.update_layout(title_text=f'The following Changes will yield a {out} increase in {target}')
|
282 |
+
st.plotly_chart(fig2, use_container_width=True)
|
283 |
+
#FunctionsModelSA_V1.corrections(best_target_tones,test_predictions))
|
284 |
+
|
285 |
+
placeholder.empty()
|