Petro
commited on
Commit
•
036f518
1
Parent(s):
b932f3e
model
Browse files
chat.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from llama_cpp import Llama
|
2 |
+
from llama_cpp import ChatCompletionRequestMessage as Message
|
3 |
+
from llama_cpp import ChatCompletionRequestSystemMessage as SystemMessage
|
4 |
+
from llama_cpp import ChatCompletionRequestAssistantMessage as AssistantMessage
|
5 |
+
from llama_cpp import ChatCompletionRequestUserMessage as UserMessage
|
6 |
+
|
7 |
+
|
8 |
+
SYSTEM = 'system'
|
9 |
+
USER = 'user'
|
10 |
+
ASSISTANT = 'assistant'
|
11 |
+
EXIT = 'exit'
|
12 |
+
model_path = "zephyr-7b-beta.Q4_K_S.gguf"
|
13 |
+
|
14 |
+
llm = Llama(model_path=model_path, n_ctx=512, max_answer_len=100) # Set chat_format according to the model you are using
|
15 |
+
|
16 |
+
|
17 |
+
class Chat:
|
18 |
+
def __init__(self, model: Llama) -> None:
|
19 |
+
self.model: Llama = model
|
20 |
+
self.messages: list[Message] = [
|
21 |
+
SystemMessage(
|
22 |
+
role=SYSTEM,
|
23 |
+
content='You are a helpful developer assistant, answer all the questions correctly and concisely.'
|
24 |
+
),
|
25 |
+
AssistantMessage(role=ASSISTANT, content='Hello, do you have any question?'),
|
26 |
+
]
|
27 |
+
|
28 |
+
def send_message(self, content: str):
|
29 |
+
new_message = UserMessage(role=USER, content=content)
|
30 |
+
self.messages.append(new_message)
|
31 |
+
|
32 |
+
def generate_reply(self) -> str:
|
33 |
+
response = self.model.create_chat_completion(
|
34 |
+
messages=self.messages,
|
35 |
+
temperature=0.7,
|
36 |
+
top_p=0.9,
|
37 |
+
top_k=20,
|
38 |
+
max_tokens=128
|
39 |
+
)
|
40 |
+
|
41 |
+
response_content = response['choices'][0]['message']
|
42 |
+
self.messages.append(AssistantMessage(role=ASSISTANT, content=response_content))
|
43 |
+
|
44 |
+
return response_content
|
main.py
CHANGED
@@ -1,26 +1,26 @@
|
|
1 |
-
from ctransformers import AutoModelForCausalLM
|
2 |
from fastapi import FastAPI
|
|
|
3 |
from pydantic import BaseModel
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
11 |
|
12 |
-
#Pydantic object
|
13 |
class validation(BaseModel):
|
14 |
prompt: str
|
15 |
-
|
16 |
|
17 |
app = FastAPI()
|
|
|
|
|
18 |
|
19 |
@app.post("/llm_on_cpu")
|
20 |
async def stream(item: validation):
|
21 |
-
|
22 |
-
|
23 |
-
user, assistant = "<|user|>", "<|assistant|>"
|
24 |
-
prompt = f"{system_prompt}{E_INST}\n{user}\n{item.prompt}{E_INST}\n{assistant}\n"
|
25 |
|
26 |
-
return llm(
|
|
|
|
|
1 |
from fastapi import FastAPI
|
2 |
+
from llama_cpp import Llama
|
3 |
from pydantic import BaseModel
|
4 |
|
5 |
+
from chat import Chat
|
6 |
+
|
7 |
+
model_path = "zephyr-7b-beta.Q4_K_S.gguf"
|
8 |
+
|
9 |
+
llm = Llama(model_path=model_path, n_ctx=512, max_answer_len=100) # Set chat_format according to the model you are using
|
10 |
+
|
11 |
+
|
12 |
|
|
|
13 |
class validation(BaseModel):
|
14 |
prompt: str
|
15 |
+
|
16 |
|
17 |
app = FastAPI()
|
18 |
+
chat = Chat(model=llm)
|
19 |
+
|
20 |
|
21 |
@app.post("/llm_on_cpu")
|
22 |
async def stream(item: validation):
|
23 |
+
chat.send_message(item.prompt)
|
24 |
+
response = chat.generate_reply()
|
|
|
|
|
25 |
|
26 |
+
return llm(response)
|