import os from ctransformers import AutoModelForCausalLM from fastapi import FastAPI from pydantic import BaseModel import requests from huggingface_hub import hf_hub_download file_name = "zephyr-7b-beta.Q4_K_S.gguf" if not os.path.exists(file_name): hf_hub_download("TheBloke/zephyr-7B-beta-GGUF", filename=file_name, local_dir=f"./") llm = AutoModelForCausalLM.from_pretrained(file_name, model_type='mistral', max_new_tokens = 1096, threads = 3, ) #Pydantic object class validation(BaseModel): prompt: str #Fast API app = FastAPI() @app.post("/llm_on_cpu") async def stream(item: validation): system_prompt = 'Below is an instruction that describes a task. Write a response that appropriately completes the request.' E_INST = "" user, assistant = "<|user|>", "<|assistant|>" prompt = f"{system_prompt}{E_INST}\n{user}\n{item.prompt}{E_INST}\n{assistant}\n" # return llm(prompt) return prompt