Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,874 Bytes
1ea89dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
import os
from abc import abstractmethod
from copy import deepcopy
from math import ceil, log
from typing import Any, Dict, Tuple
import numpy as np
import torch
from torch.utils.data import Dataset
import unik3d.datasets.pipelines as pipelines
from unik3d.utils import (eval_3d, eval_depth, identity, is_main_process,
recursive_index, sync_tensor_across_gpus)
from unik3d.utils.constants import (IMAGENET_DATASET_MEAN,
IMAGENET_DATASET_STD, OPENAI_DATASET_MEAN,
OPENAI_DATASET_STD)
class BaseDataset(Dataset):
min_depth = 0.01
max_depth = 1000.0
def __init__(
self,
image_shape: Tuple[int, int],
split_file: str,
test_mode: bool,
normalize: bool,
augmentations_db: Dict[str, Any],
shape_constraints: Dict[str, Any],
resize_method: str,
mini: float,
num_copies: int = 1,
**kwargs,
) -> None:
super().__init__()
assert normalize in [None, "imagenet", "openai"]
self.split_file = split_file
self.test_mode = test_mode
self.data_root = os.environ["DATAROOT"]
self.image_shape = image_shape
self.resize_method = resize_method
self.mini = mini
self.num_frames = 1
self.num_copies = num_copies
self.metrics_store = {}
self.metrics_count = {}
if normalize == "imagenet":
self.normalization_stats = {
"mean": torch.tensor(IMAGENET_DATASET_MEAN),
"std": torch.tensor(IMAGENET_DATASET_STD),
}
elif normalize == "openai":
self.normalization_stats = {
"mean": torch.tensor(OPENAI_DATASET_MEAN),
"std": torch.tensor(OPENAI_DATASET_STD),
}
else:
self.normalization_stats = {
"mean": torch.tensor([0.0, 0.0, 0.0]),
"std": torch.tensor([1.0, 1.0, 1.0]),
}
for k, v in augmentations_db.items():
setattr(self, k, v)
self.shape_constraints = shape_constraints
if not self.test_mode:
self._augmentation_space()
self.masker = pipelines.AnnotationMask(
min_value=0.0,
max_value=self.max_depth if test_mode else None,
custom_fn=identity,
)
self.filler = pipelines.RandomFiller(test_mode=test_mode)
shape_mult = self.shape_constraints["shape_mult"]
self.image_shape = [
ceil(self.image_shape[0] / shape_mult) * shape_mult,
ceil(self.image_shape[1] / shape_mult) * shape_mult,
]
self.resizer = pipelines.ContextCrop(
image_shape=self.image_shape,
train_ctx_range=(1.0 / self.random_scale, 1.0 * self.random_scale),
test_min_ctx=self.test_context,
keep_original=test_mode,
shape_constraints=self.shape_constraints,
)
self.collecter = pipelines.Collect(
keys=["image_fields", "mask_fields", "gt_fields", "camera_fields"]
)
def __len__(self):
return len(self.dataset)
def pack_batch(self, results):
results["paddings"] = [
results[x]["paddings"][0] for x in results["sequence_fields"]
]
for fields_name in [
"image_fields",
"gt_fields",
"mask_fields",
"camera_fields",
]:
fields = results.get(fields_name)
packed = {
field: torch.cat(
[results[seq][field] for seq in results["sequence_fields"]]
)
for field in fields
}
results.update(packed)
return results
def unpack_batch(self, results):
for fields_name in [
"image_fields",
"gt_fields",
"mask_fields",
"camera_fields",
]:
fields = results.get(fields_name)
unpacked = {
field: {
seq: results[field][idx : idx + 1]
for idx, seq in enumerate(results["sequence_fields"])
}
for field in fields
}
results.update(unpacked)
return results
def _augmentation_space(self):
self.augmentations_dict = {
"Flip": pipelines.RandomFlip(prob=self.flip_p),
"Jitter": pipelines.RandomColorJitter(
(-self.random_jitter, self.random_jitter), prob=self.jitter_p
),
"Gamma": pipelines.RandomGamma(
(-self.random_gamma, self.random_gamma), prob=self.gamma_p
),
"Blur": pipelines.GaussianBlur(
kernel_size=13, sigma=(0.1, self.random_blur), prob=self.blur_p
),
"Grayscale": pipelines.RandomGrayscale(prob=self.grayscale_p),
}
def augment(self, results):
for name, aug in self.augmentations_dict.items():
results = aug(results)
return results
def prepare_depth_eval(self, inputs, preds):
new_preds = {}
keyframe_idx = getattr(self, "keyframe_idx", None)
slice_idx = slice(
keyframe_idx, keyframe_idx + 1 if keyframe_idx is not None else None
)
new_gts = inputs["depth"][slice_idx]
new_masks = inputs["depth_mask"][slice_idx].bool()
for key, val in preds.items():
if "depth" in key:
new_preds[key] = val[slice_idx]
return new_gts, new_preds, new_masks
def prepare_points_eval(self, inputs, preds):
new_preds = {}
new_gts = inputs["points"]
new_masks = inputs["depth_mask"].bool()
if "points_mask" in inputs:
new_masks = inputs["points_mask"].bool()
for key, val in preds.items():
if "points" in key:
new_preds[key] = val
return new_gts, new_preds, new_masks
def add_points(self, inputs):
inputs["points"] = inputs.get("camera_original", inputs["camera"]).reconstruct(
inputs["depth"]
)
return inputs
@torch.autocast(device_type="cuda", enabled=False, dtype=torch.float32)
def accumulate_metrics(
self,
inputs,
preds,
keyframe_idx=None,
metrics=["depth", "points", "flow_fwd", "pairwise"],
):
if "depth" in inputs and "points" not in inputs:
inputs = self.add_points(inputs)
available_metrics = []
for metric in metrics:
metric_in_gt = any((metric in k for k in inputs.keys()))
metric_in_pred = any((metric in k for k in preds.keys()))
if metric_in_gt and metric_in_pred:
available_metrics.append(metric)
if keyframe_idx is not None:
inputs = recursive_index(inputs, slice(keyframe_idx, keyframe_idx + 1))
preds = recursive_index(preds, slice(keyframe_idx, keyframe_idx + 1))
if "depth" in available_metrics:
depth_gt, depth_pred, depth_masks = self.prepare_depth_eval(inputs, preds)
self.accumulate_metrics_depth(depth_gt, depth_pred, depth_masks)
if "points" in available_metrics:
points_gt, points_pred, points_masks = self.prepare_points_eval(
inputs, preds
)
self.accumulate_metrics_3d(points_gt, points_pred, points_masks)
@torch.autocast(device_type="cuda", enabled=False, dtype=torch.float32)
def accumulate_metrics_depth(self, gts, preds, masks):
for eval_type, pred in preds.items():
log_name = eval_type.replace("depth", "").strip("-").strip("_")
if log_name not in self.metrics_store:
self.metrics_store[log_name] = {}
current_count = self.metrics_count.get(
log_name, torch.tensor([], device=gts.device)
)
new_count = masks.view(gts.shape[0], -1).sum(dim=-1)
self.metrics_count[log_name] = torch.cat([current_count, new_count])
for k, v in eval_depth(gts, pred, masks, max_depth=self.max_depth).items():
current_metric = self.metrics_store[log_name].get(
k, torch.tensor([], device=gts.device)
)
self.metrics_store[log_name][k] = torch.cat([current_metric, v])
@torch.autocast(device_type="cuda", enabled=False, dtype=torch.float32)
def accumulate_metrics_3d(self, gts, preds, masks):
thresholds = torch.linspace(
log(self.min_depth),
log(self.max_depth / 20),
steps=100,
device=gts.device,
).exp()
for eval_type, pred in preds.items():
log_name = eval_type.replace("points", "").strip("-").strip("_")
if log_name not in self.metrics_store:
self.metrics_store[log_name] = {}
current_count = self.metrics_count.get(
log_name, torch.tensor([], device=gts.device)
)
new_count = masks.view(gts.shape[0], -1).sum(dim=-1)
self.metrics_count[log_name] = torch.cat([current_count, new_count])
for k, v in eval_3d(gts, pred, masks, thresholds=thresholds).items():
current_metric = self.metrics_store[log_name].get(
k, torch.tensor([], device=gts.device)
)
self.metrics_store[log_name][k] = torch.cat([current_metric, v])
def get_evaluation(self, metrics=None):
metric_vals = {}
for eval_type in metrics if metrics is not None else self.metrics_store.keys():
assert self.metrics_store[eval_type]
cnts = sync_tensor_across_gpus(self.metrics_count[eval_type])
for name, val in self.metrics_store[eval_type].items():
# vals_r = (sync_tensor_across_gpus(val) * cnts / cnts.sum()).sum()
vals_r = sync_tensor_across_gpus(val).mean()
metric_vals[f"{eval_type}_{name}".strip("_")] = np.round(
vals_r.cpu().item(), 5
)
self.metrics_store[eval_type] = {}
self.metrics_count = {}
return metric_vals
def replicate(self, results):
for i in range(1, self.num_copies):
results[(0, i)] = {k: deepcopy(v) for k, v in results[(0, 0)].items()}
results["sequence_fields"].append((0, i))
return results
def log_load_dataset(self):
if is_main_process():
info = f"Loaded {self.__class__.__name__} with {len(self)} images."
print(info)
def pre_pipeline(self, results):
results["image_fields"] = results.get("image_fields", set())
results["gt_fields"] = results.get("gt_fields", set())
results["mask_fields"] = results.get("mask_fields", set())
results["sequence_fields"] = results.get("sequence_fields", set())
results["camera_fields"] = results.get("camera_fields", set())
results["dataset_name"] = (
[self.__class__.__name__] * self.num_frames * self.num_copies
)
results["depth_scale"] = [self.depth_scale] * self.num_frames * self.num_copies
results["si"] = [False] * self.num_frames * self.num_copies
results["dense"] = [False] * self.num_frames * self.num_copies
results["synthetic"] = [False] * self.num_frames * self.num_copies
results["quality"] = [0] * self.num_frames * self.num_copies
results["valid_camera"] = [True] * self.num_frames * self.num_copies
results["valid_pose"] = [True] * self.num_frames * self.num_copies
return results
def eval_mask(self, valid_mask):
return valid_mask
def chunk(self, dataset, chunk_dim=1, pct=1.0):
subsampled_datasets = [
x
for i in range(0, len(dataset), int(1 / pct * chunk_dim))
for x in dataset[i : i + chunk_dim]
]
return subsampled_datasets
@abstractmethod
def preprocess(self, results):
raise NotImplementedError
@abstractmethod
def postprocess(self, results):
raise NotImplementedError
@abstractmethod
def get_mapper(self):
raise NotImplementedError
@abstractmethod
def get_intrinsics(self, idx, image_name):
raise NotImplementedError
@abstractmethod
def get_extrinsics(self, idx, image_name):
raise NotImplementedError
@abstractmethod
def load_dataset(self):
raise NotImplementedError
@abstractmethod
def get_single_item(self, idx, sample=None, mapper=None):
raise NotImplementedError
@abstractmethod
def __getitem__(self, idx):
raise NotImplementedError
|