File size: 7,138 Bytes
1ea89dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import io
import os
from time import time
from typing import Any, Dict, List, Tuple

import numpy as np
import tables
import torch
import torchvision
import torchvision.transforms.v2.functional as TF
from PIL import Image

from unik3d.datasets.base_dataset import BaseDataset
from unik3d.utils import is_main_process
from unik3d.utils.camera import BatchCamera, Pinhole

"""
Awful class for legacy reasons, we assume only pinhole cameras
And we "fake" sequences by setting sequence_fields to [(0, 0)] and cam2w as eye(4)
"""


class ImageDataset(BaseDataset):
    def __init__(
        self,
        image_shape: Tuple[int, int],
        split_file: str,
        test_mode: bool,
        normalize: bool,
        augmentations_db: Dict[str, Any],
        shape_constraints: Dict[str, Any],
        resize_method: str,
        mini: float,
        benchmark: bool = False,
        **kwargs,
    ) -> None:
        super().__init__(
            image_shape=image_shape,
            split_file=split_file,
            test_mode=test_mode,
            benchmark=benchmark,
            normalize=normalize,
            augmentations_db=augmentations_db,
            shape_constraints=shape_constraints,
            resize_method=resize_method,
            mini=mini,
            **kwargs,
        )
        self.mapper = self.get_mapper()

    def get_single_item(self, idx, sample=None, mapper=None):
        sample = self.dataset[idx] if sample is None else sample
        mapper = self.mapper if mapper is None else mapper

        results = {
            (0, 0): dict(
                gt_fields=set(),
                image_fields=set(),
                mask_fields=set(),
                camera_fields=set(),
            )
        }
        results = self.pre_pipeline(results)
        results["sequence_fields"] = [(0, 0)]

        chunk_idx = (
            int(sample[self.mapper["chunk_idx"]]) if "chunk_idx" in self.mapper else 0
        )
        h5_path = os.path.join(self.data_root, self.hdf5_paths[chunk_idx])
        with tables.File(
            h5_path,
            mode="r",
            libver="latest",
            swmr=True,
        ) as h5file_chunk:
            for key_mapper, idx_mapper in mapper.items():
                if "image" not in key_mapper and "depth" not in key_mapper:
                    continue
                value = sample[idx_mapper]
                results[(0, 0)][key_mapper] = value
                name = key_mapper.replace("_filename", "")
                value_root = "/" + value

                if "image" in key_mapper:
                    results[(0, 0)]["filename"] = value
                    file = h5file_chunk.get_node(value_root).read()
                    image = (
                        torchvision.io.decode_image(torch.from_numpy(file))
                        .to(torch.uint8)
                        .squeeze()
                    )
                    results[(0, 0)]["image_fields"].add(name)
                    results[(0, 0)][f"image_ori_shape"] = image.shape[-2:]
                    results[(0, 0)][name] = image[None, ...]

                    # collect camera information for the given image
                    name = name.replace("image_", "")
                    results[(0, 0)]["camera_fields"].update({"camera", "cam2w"})
                    K = self.get_intrinsics(idx, value)
                    if K is None:
                        K = torch.eye(3)
                        K[0, 0] = K[1, 1] = 0.7 * self.image_shape[1]
                        K[0, 2] = 0.5 * self.image_shape[1]
                        K[1, 2] = 0.5 * self.image_shape[0]

                    camera = Pinhole(K=K[None, ...].clone())
                    results[(0, 0)]["camera"] = BatchCamera.from_camera(camera)
                    results[(0, 0)]["cam2w"] = self.get_extrinsics(idx, value)[
                        None, ...
                    ]

                elif "depth" in key_mapper:
                    # start = time()
                    file = h5file_chunk.get_node(value_root).read()
                    depth = Image.open(io.BytesIO(file))
                    depth = TF.pil_to_tensor(depth).squeeze().to(torch.float32)
                    if depth.ndim == 3:
                        depth = depth[2] + depth[1] * 255 + depth[0] * 255 * 255

                    results[(0, 0)]["gt_fields"].add(name)
                    results[(0, 0)][f"depth_ori_shape"] = depth.shape

                    depth = (
                        depth.view(1, 1, *depth.shape).contiguous() / self.depth_scale
                    )
                    results[(0, 0)][name] = depth

        results = self.preprocess(results)
        if not self.test_mode:
            results = self.augment(results)
        results = self.postprocess(results)
        return results

    def preprocess(self, results):
        results = self.replicate(results)
        for i, seq in enumerate(results["sequence_fields"]):
            self.resizer.ctx = None
            results[seq] = self.resizer(results[seq])
            num_pts = torch.count_nonzero(results[seq]["depth"] > 0)
            if num_pts < 50:
                raise IndexError(f"Too few points in depth map ({num_pts})")

            for key in results[seq].get("image_fields", ["image"]):
                results[seq][key] = results[seq][key].to(torch.float32) / 255

        # update fields common in sequence
        for key in ["image_fields", "gt_fields", "mask_fields", "camera_fields"]:
            if key in results[(0, 0)]:
                results[key] = results[(0, 0)][key]
        results = self.pack_batch(results)
        return results

    def postprocess(self, results):
        # normalize after because color aug requires [0,255]?
        for key in results.get("image_fields", ["image"]):
            results[key] = TF.normalize(results[key], **self.normalization_stats)
        results = self.filler(results)
        results = self.unpack_batch(results)
        results = self.masker(results)
        results = self.collecter(results)
        return results

    def __getitem__(self, idx):
        try:
            if isinstance(idx, (list, tuple)):
                results = [self.get_single_item(i) for i in idx]
            else:
                results = self.get_single_item(idx)
        except Exception as e:
            print(f"Error loading sequence {idx} for {self.__class__.__name__}: {e}")
            idx = np.random.randint(0, len(self.dataset))
            results = self[idx]
        return results

    def get_intrinsics(self, idx, image_name):
        idx_sample = self.mapper.get("K", 1000)
        sample = self.dataset[idx]
        if idx_sample >= len(sample):
            return None
        return sample[idx_sample]

    def get_extrinsics(self, idx, image_name):
        idx_sample = self.mapper.get("cam2w", 1000)
        sample = self.dataset[idx]
        if idx_sample >= len(sample):
            return torch.eye(4)
        return sample[idx_sample]

    def get_mapper(self):
        return {
            "image_filename": 0,
            "depth_filename": 1,
            "K": 2,
        }