Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,449 Bytes
1ea89dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#pragma once
#include <torch/extension.h>
#include <tuple>
#include "utils/pytorch3d_cutils.h"
// Compute indices of K nearest neighbors in pointcloud p2 to points
// in pointcloud p1.
//
// Args:
// p1: FloatTensor of shape (N, P1, D) giving a batch of pointclouds each
// containing P1 points of dimension D.
// p2: FloatTensor of shape (N, P2, D) giving a batch of pointclouds each
// containing P2 points of dimension D.
// lengths1: LongTensor, shape (N,), giving actual length of each P1 cloud.
// lengths2: LongTensor, shape (N,), giving actual length of each P2 cloud.
// norm: int specifying the norm for the distance (1 for L1, 2 for L2)
// K: int giving the number of nearest points to return.
// version: Integer telling which implementation to use.
//
// Returns:
// p1_neighbor_idx: LongTensor of shape (N, P1, K), where
// p1_neighbor_idx[n, i, k] = j means that the kth nearest
// neighbor to p1[n, i] in the cloud p2[n] is p2[n, j].
// It is padded with zeros so that it can be used easily in a later
// gather() operation.
//
// p1_neighbor_dists: FloatTensor of shape (N, P1, K) containing the squared
// distance from each point p1[n, p, :] to its K neighbors
// p2[n, p1_neighbor_idx[n, p, k], :].
// CPU implementation.
std::tuple<at::Tensor, at::Tensor> KNearestNeighborIdxCpu(
const at::Tensor& p1,
const at::Tensor& p2,
const at::Tensor& lengths1,
const at::Tensor& lengths2,
const int norm,
const int K);
// CUDA implementation
std::tuple<at::Tensor, at::Tensor> KNearestNeighborIdxCuda(
const at::Tensor& p1,
const at::Tensor& p2,
const at::Tensor& lengths1,
const at::Tensor& lengths2,
const int norm,
const int K,
const int version);
// Implementation which is exposed.
std::tuple<at::Tensor, at::Tensor> KNearestNeighborIdx(
const at::Tensor& p1,
const at::Tensor& p2,
const at::Tensor& lengths1,
const at::Tensor& lengths2,
const int norm,
const int K,
const int version) {
if (p1.is_cuda() || p2.is_cuda()) {
#ifdef WITH_CUDA
CHECK_CUDA(p1);
CHECK_CUDA(p2);
return KNearestNeighborIdxCuda(
p1, p2, lengths1, lengths2, norm, K, version);
#else
AT_ERROR("Not compiled with GPU support.");
#endif
}
return KNearestNeighborIdxCpu(p1, p2, lengths1, lengths2, norm, K);
}
// Compute gradients with respect to p1 and p2
//
// Args:
// p1: FloatTensor of shape (N, P1, D) giving a batch of pointclouds each
// containing P1 points of dimension D.
// p2: FloatTensor of shape (N, P2, D) giving a batch of pointclouds each
// containing P2 points of dimension D.
// lengths1: LongTensor, shape (N,), giving actual length of each P1 cloud.
// lengths2: LongTensor, shape (N,), giving actual length of each P2 cloud.
// p1_neighbor_idx: LongTensor of shape (N, P1, K), where
// p1_neighbor_idx[n, i, k] = j means that the kth nearest
// neighbor to p1[n, i] in the cloud p2[n] is p2[n, j].
// It is padded with zeros so that it can be used easily in a later
// gather() operation. This is computed from the forward pass.
// norm: int specifying the norm for the distance (1 for L1, 2 for L2)
// grad_dists: FLoatTensor of shape (N, P1, K) which contains the input
// gradients.
//
// Returns:
// grad_p1: FloatTensor of shape (N, P1, D) containing the output gradients
// wrt p1.
// grad_p2: FloatTensor of shape (N, P2, D) containing the output gradients
// wrt p2.
// CPU implementation.
std::tuple<at::Tensor, at::Tensor> KNearestNeighborBackwardCpu(
const at::Tensor& p1,
const at::Tensor& p2,
const at::Tensor& lengths1,
const at::Tensor& lengths2,
const at::Tensor& idxs,
const int norm,
const at::Tensor& grad_dists);
// CUDA implementation
std::tuple<at::Tensor, at::Tensor> KNearestNeighborBackwardCuda(
const at::Tensor& p1,
const at::Tensor& p2,
const at::Tensor& lengths1,
const at::Tensor& lengths2,
const at::Tensor& idxs,
const int norm,
const at::Tensor& grad_dists);
// Implementation which is exposed.
std::tuple<at::Tensor, at::Tensor> KNearestNeighborBackward(
const at::Tensor& p1,
const at::Tensor& p2,
const at::Tensor& lengths1,
const at::Tensor& lengths2,
const at::Tensor& idxs,
const int norm,
const at::Tensor& grad_dists) {
if (p1.is_cuda() || p2.is_cuda()) {
#ifdef WITH_CUDA
CHECK_CUDA(p1);
CHECK_CUDA(p2);
return KNearestNeighborBackwardCuda(
p1, p2, lengths1, lengths2, idxs, norm, grad_dists);
#else
AT_ERROR("Not compiled with GPU support.");
#endif
}
return KNearestNeighborBackwardCpu(
p1, p2, lengths1, lengths2, idxs, norm, grad_dists);
}
// Utility to check whether a KNN version can be used.
//
// Args:
// version: Integer in the range 0 <= version <= 3 indicating one of our
// KNN implementations.
// D: Number of dimensions for the input and query point clouds
// K: Number of neighbors to be found
//
// Returns:
// Whether the indicated KNN version can be used.
bool KnnCheckVersion(int version, const int64_t D, const int64_t K); |