Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,334 Bytes
1ea89dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
// This converts dynamic array lookups into static array lookups, for small
// arrays up to size 32.
//
// Suppose we have a small thread-local array:
//
// float vals[10];
//
// Ideally we should only index this array using static indices:
//
// for (int i = 0; i < 10; ++i) vals[i] = i * i;
//
// If we do so, then the CUDA compiler may be able to place the array into
// registers, which can have a big performance improvement. However if we
// access the array dynamically, the the compiler may force the array into
// local memory, which has the same latency as global memory.
//
// These functions convert dynamic array access into static array access
// using a brute-force lookup table. It can be used like this:
//
// float vals[10];
// int idx = 3;
// float val = 3.14f;
// RegisterIndexUtils<float, 10>::set(vals, idx, val);
// float val2 = RegisterIndexUtils<float, 10>::get(vals, idx);
//
// The implementation is based on fbcuda/RegisterUtils.cuh:
// https://github.com/facebook/fbcuda/blob/master/RegisterUtils.cuh
// To avoid depending on the entire library, we just reimplement these two
// functions. The fbcuda implementation is a bit more sophisticated, and uses
// the preprocessor to generate switch statements that go up to N for each
// value of N. We are lazy and just have a giant explicit switch statement.
//
// We might be able to use a template metaprogramming approach similar to
// DispatchKernel1D for this. However DispatchKernel1D is intended to be used
// for dispatching to the correct CUDA kernel on the host, while this is
// is intended to run on the device. I was concerned that a metaprogramming
// approach for this might lead to extra function calls at runtime if the
// compiler fails to optimize them away, which could be very slow on device.
// However I didn't actually benchmark or test this.
template <typename T, int N>
struct RegisterIndexUtils {
__device__ __forceinline__ static T get(const T arr[N], int idx) {
if (idx < 0 || idx >= N)
return T();
switch (idx) {
case 0:
return arr[0];
case 1:
return arr[1];
case 2:
return arr[2];
case 3:
return arr[3];
case 4:
return arr[4];
case 5:
return arr[5];
case 6:
return arr[6];
case 7:
return arr[7];
case 8:
return arr[8];
case 9:
return arr[9];
case 10:
return arr[10];
case 11:
return arr[11];
case 12:
return arr[12];
case 13:
return arr[13];
case 14:
return arr[14];
case 15:
return arr[15];
case 16:
return arr[16];
case 17:
return arr[17];
case 18:
return arr[18];
case 19:
return arr[19];
case 20:
return arr[20];
case 21:
return arr[21];
case 22:
return arr[22];
case 23:
return arr[23];
case 24:
return arr[24];
case 25:
return arr[25];
case 26:
return arr[26];
case 27:
return arr[27];
case 28:
return arr[28];
case 29:
return arr[29];
case 30:
return arr[30];
case 31:
return arr[31];
};
return T();
}
__device__ __forceinline__ static void set(T arr[N], int idx, T val) {
if (idx < 0 || idx >= N)
return;
switch (idx) {
case 0:
arr[0] = val;
break;
case 1:
arr[1] = val;
break;
case 2:
arr[2] = val;
break;
case 3:
arr[3] = val;
break;
case 4:
arr[4] = val;
break;
case 5:
arr[5] = val;
break;
case 6:
arr[6] = val;
break;
case 7:
arr[7] = val;
break;
case 8:
arr[8] = val;
break;
case 9:
arr[9] = val;
break;
case 10:
arr[10] = val;
break;
case 11:
arr[11] = val;
break;
case 12:
arr[12] = val;
break;
case 13:
arr[13] = val;
break;
case 14:
arr[14] = val;
break;
case 15:
arr[15] = val;
break;
case 16:
arr[16] = val;
break;
case 17:
arr[17] = val;
break;
case 18:
arr[18] = val;
break;
case 19:
arr[19] = val;
break;
case 20:
arr[20] = val;
break;
case 21:
arr[21] = val;
break;
case 22:
arr[22] = val;
break;
case 23:
arr[23] = val;
break;
case 24:
arr[24] = val;
break;
case 25:
arr[25] = val;
break;
case 26:
arr[26] = val;
break;
case 27:
arr[27] = val;
break;
case 28:
arr[28] = val;
break;
case 29:
arr[29] = val;
break;
case 30:
arr[30] = val;
break;
case 31:
arr[31] = val;
break;
}
}
}; |