File size: 6,880 Bytes
1ea89dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import torch
import torch.nn as nn
import torch.nn.functional as F

from unik3d.utils.constants import VERBOSE
from unik3d.utils.geometric import dilate, erode
from unik3d.utils.misc import profile_method

from .utils import (FNS, REGRESSION_DICT, masked_mean, masked_mean_var,
                    masked_quantile)


class SpatialGradient(torch.nn.Module):
    def __init__(
        self,
        weight: float,
        input_fn: str,
        output_fn: str,
        fn: str,
        scales: int = 1,
        gamma: float = 1.0,
        quantile: float = 0.0,
        laplacian: bool = False,
        canny_edge: bool = False,
        **kwargs,
    ):
        super().__init__()
        self.name: str = self.__class__.__name__
        self.weight = weight
        self.output_fn = FNS[output_fn]
        self.input_fn = FNS[input_fn]
        self.fn = REGRESSION_DICT[fn]
        self.gamma = gamma
        sobel_kernel_x = (
            torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=torch.float32)
            .unsqueeze(0)
            .unsqueeze(0)
        )
        sobel_kernel_y = (
            torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], dtype=torch.float32)
            .unsqueeze(0)
            .unsqueeze(0)
        )
        laplacian_kernel = (
            torch.tensor([[0, 1, 0], [1, -4, 1], [0, 1, 0]], dtype=torch.float32)
            .unsqueeze(0)
            .unsqueeze(0)
        )
        ones = torch.ones(1, 1, 3, 3, dtype=torch.float32)
        self.sobel_kernel_x = nn.Parameter(sobel_kernel_x, requires_grad=False)
        self.sobel_kernel_y = nn.Parameter(sobel_kernel_y, requires_grad=False)
        self.ones = nn.Parameter(ones, requires_grad=False)
        self.laplacian_kernel = nn.Parameter(laplacian_kernel, requires_grad=False)

        self.quantile = quantile
        self.scales = scales
        self.laplacian = laplacian
        self.canny_edge = canny_edge

    @profile_method(verbose=VERBOSE)
    @torch.autocast(device_type="cuda", enabled=False, dtype=torch.float32)
    def forward(
        self,
        input,
        target,
        mask,
        quality=None,
    ):
        B = input.shape[0]
        input = self.input_fn(input.float())
        target = self.input_fn(target.float())

        # normalize to avoid scale issue, shift is not important as we are computing gradients
        input_mean, input_var = masked_mean_var(input.detach(), mask, dim=(-3, -2, -1))
        target_mean, target_var = masked_mean_var(target, mask, dim=(-3, -2, -1))
        input = (input - input_mean) / (input_var + 1e-6) ** 0.5
        target = (target - target_mean) / (target_var + 1e-6) ** 0.5

        loss = 0.0
        norm_factor = sum([(i + 1) ** 2 for i in range(self.scales)])
        for scale in range(self.scales):
            if scale > 0:
                input = F.interpolate(
                    input,
                    size=(input.shape[-2] // 2, input.shape[-1] // 2),
                    mode="bilinear",
                    align_corners=False,
                    antialias=True,
                )
                target = F.interpolate(
                    target,
                    size=(target.shape[-2] // 2, target.shape[-1] // 2),
                    mode="nearest",
                )
                mask = (
                    F.interpolate(
                        mask.float(),
                        size=(mask.shape[-2] // 2, mask.shape[-1] // 2),
                        mode="nearest",
                    )
                    > 0.9
                )
            grad_loss = self.loss(input, target, mask, quality)
            # keep per pixel same weight
            loss = loss + grad_loss * (self.scales - scale) ** 2 / norm_factor

        loss = self.output_fn(loss)
        return loss

    def loss(self, input, target, mask, quality):
        device, dtype = input.device, input.dtype
        B, C, H, W = input.shape

        # sobel
        input_edge_x = (
            F.conv2d(input, self.sobel_kernel_x.repeat(C, 1, 1, 1), groups=C) / 8
        )
        target_edge_x = (
            F.conv2d(target, self.sobel_kernel_x.repeat(C, 1, 1, 1), groups=C) / 8
        )
        input_edge_y = (
            F.conv2d(input, self.sobel_kernel_y.repeat(C, 1, 1, 1), groups=C) / 8
        )
        target_edge_y = (
            F.conv2d(target, self.sobel_kernel_y.repeat(C, 1, 1, 1), groups=C) / 8
        )
        input_edge = torch.stack([input_edge_x, input_edge_y], dim=-1)
        target_edge = torch.stack([target_edge_x, target_edge_y], dim=-1)

        mask = F.conv2d(mask.clone().to(input.dtype), self.ones) == 9
        mask = mask.squeeze(1)

        error = input_edge - target_edge
        error = error.norm(dim=-1).norm(
            dim=1
        )  # take RMSE over xy-dir (isotropic) and over channel-dir (isotropic)

        if quality is not None:
            for quality_level in [1, 2]:
                current_quality = quality == quality_level
                if current_quality.sum() > 0:
                    error_qtl = error[current_quality].detach()
                    mask_qtl = error_qtl < masked_quantile(
                        error_qtl,
                        mask[current_quality],
                        dims=[1, 2],
                        q=1 - self.quantile * quality_level,
                    ).view(-1, 1, 1)
                    mask[current_quality] = mask[current_quality] & mask_qtl
        else:
            error_qtl = error.detach()
            mask = mask & (
                error_qtl
                < masked_quantile(
                    error_qtl, mask, dims=[1, 2], q=1 - self.quantile
                ).view(-1, 1, 1)
            )

        loss = masked_mean(error, mask, dim=(-2, -1)).squeeze(dim=(-2, -1))

        if self.laplacian:
            input_laplacian = (
                F.conv2d(input, self.laplacian_kernel.repeat(C, 1, 1, 1), groups=C) / 8
            )
            target_laplacian = (
                F.conv2d(target, self.laplacian_kernel.repeat(C, 1, 1, 1), groups=C) / 8
            )
            error_laplacian = self.fn(
                input_laplacian - target_laplacian, gamma=self.gamma
            )
            error_laplacian = (torch.mean(error_laplacian**2, dim=1) + 1e-6) ** 0.5
            loss_laplacian = masked_mean(error_laplacian, mask, dim=(-2, -1)).squeeze(
                dim=(-2, -1)
            )
            loss = loss + 0.1 * loss_laplacian

        return loss

    @classmethod
    def build(cls, config):
        obj = cls(
            weight=config["weight"],
            input_fn=config["input_fn"],
            output_fn=config["output_fn"],
            fn=config["fn"],
            gamma=config["gamma"],
            quantile=config["quantile"],
            scales=config["scales"],
            laplacian=config["laplacian"],
        )
        return obj