File size: 11,298 Bytes
1ea89dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
from math import log, pi, prod
from typing import Any, Dict, List, Optional, Tuple

import torch

FNS = {
    "sqrto": lambda x: torch.sqrt(x + 1),
    "sqrt": lambda x: torch.sqrt(x + 1e-4),
    "log": lambda x: torch.log(x + 1e-4),
    "log1": lambda x: torch.log(x + 1),
    # transition from log(1/x) to 1/x at x=100
    # if x -> 0 : log(1/x), if x -> inf : log(1+1/x) -> 1/x + hot
    "log1i": lambda x: torch.log(1 + 50 / (1e-4 + x)),
    "log10": lambda x: torch.log10(1e-4 + x),
    "log2": lambda x: torch.log2(1e-4 + x),
    "linear": lambda x: x,
    "square": torch.square,
    "disp": lambda x: 1 / (x + 1e-4),
    "disp1": lambda x: 1 / (1 + x),
}


FNS_INV = {
    "sqrt": torch.square,
    "log": torch.exp,
    "log1": lambda x: torch.exp(x) - 1,
    "linear": lambda x: x,
    "square": torch.sqrt,
    "disp": lambda x: 1 / x,
}


def masked_mean_var(
    data: torch.Tensor, mask: torch.Tensor, dim: List[int], keepdim: bool = True
):
    if mask is None:
        return data.mean(dim=dim, keepdim=keepdim), data.var(dim=dim, keepdim=keepdim)
    # if data[mask].isnan().any():
    #     print("Warning: NaN in masked_mean_var, valid_pixels before and after", mask.sum(dim=dim).squeeze(), (mask & ~data.isnan()).sum(dim=dim).squeeze())
    mask = (mask & ~data.isnan().any(dim=1, keepdim=True)).float()
    data = torch.nan_to_num(data, nan=0.0)
    mask_sum = torch.sum(mask, dim=dim, keepdim=True)
    mask_mean = torch.sum(data * mask, dim=dim, keepdim=True) / torch.clamp(
        mask_sum, min=1.0
    )
    mask_var = torch.sum(
        mask * (data - mask_mean) ** 2, dim=dim, keepdim=True
    ) / torch.clamp(mask_sum, min=1.0)
    if not keepdim:
        mask_mean, mask_var = mask_mean.squeeze(dim), mask_var.squeeze(dim)
    return mask_mean, mask_var


def masked_mean(data: torch.Tensor, mask: torch.Tensor | None, dim: List[int]):
    if mask is None:
        return data.mean(dim=dim, keepdim=True)
    mask = mask.float()
    mask_sum = torch.sum(mask, dim=dim, keepdim=True)
    mask_mean = torch.sum(
        torch.nan_to_num(data, nan=0.0) * mask, dim=dim, keepdim=True
    ) / mask_sum.clamp(min=1.0)
    return mask_mean


def masked_quantile(
    data: torch.Tensor, mask: torch.Tensor | None, dims: List[int], q: float
):
    """
    Compute the quantile of the data only where the mask is 1 along specified dimensions.

    Args:
        data (torch.Tensor): The input data tensor.
        mask (torch.Tensor): The mask tensor with the same shape as data, containing 1s where data should be considered.
        dims (list of int): The dimensions to compute the quantile over.
        q (float): The quantile to compute, must be between 0 and 1.

    Returns:
        torch.Tensor: The quantile computed over the specified dimensions, ignoring masked values.
    """
    masked_data = data * mask if mask is not None else data

    # Get a list of all dimensions
    all_dims = list(range(masked_data.dim()))

    # Revert negative dimensions
    dims = [d % masked_data.dim() for d in dims]

    # Find the dimensions to keep (not included in the `dims` list)
    keep_dims = [d for d in all_dims if d not in dims]

    # Permute dimensions to bring `dims` to the front
    permute_order = dims + keep_dims
    permuted_data = masked_data.permute(permute_order)

    # Reshape into 2D: (-1, remaining_dims)
    collapsed_shape = (
        -1,
        prod([permuted_data.size(d) for d in range(len(dims), permuted_data.dim())]),
    )
    reshaped_data = permuted_data.reshape(collapsed_shape)
    if mask is None:
        return torch.quantile(reshaped_data, q, dim=0)

    permuted_mask = mask.permute(permute_order)
    reshaped_mask = permuted_mask.reshape(collapsed_shape)

    # Calculate quantile along the first dimension where mask is true
    quantiles = []
    for i in range(reshaped_data.shape[1]):
        valid_data = reshaped_data[:, i][reshaped_mask[:, i]]
        if valid_data.numel() == 0:
            # print("Warning: No valid data found for quantile calculation.")
            quantiles.append(reshaped_data[:, i].min() * 0.99)
        else:
            quantiles.append(torch.quantile(valid_data, q, dim=0))

    # Stack back into a tensor with reduced dimensions
    quantiles = torch.stack(quantiles)
    quantiles = quantiles.reshape(
        [permuted_data.size(d) for d in range(len(dims), permuted_data.dim())]
    )

    return quantiles


def masked_median(data: torch.Tensor, mask: torch.Tensor, dim: List[int]):
    ndim = data.ndim
    data = data.flatten(ndim - len(dim))
    mask = mask.flatten(ndim - len(dim))
    mask_median = torch.median(data[..., mask], dim=-1).values
    return mask_median


def masked_median_mad(data: torch.Tensor, mask: torch.Tensor, dim: List[int]):
    ndim = data.ndim
    data = data.flatten(ndim - len(dim))
    mask = mask.flatten(ndim - len(dim))
    mask_median = torch.median(data[mask], dim=-1, keepdim=True).values
    mask_mad = masked_mean((data - mask_median).abs(), mask, dim=(-1,))
    return mask_median, mask_mad


def masked_weighted_mean_var(
    data: torch.Tensor, mask: torch.Tensor, weights: torch.Tensor, dim: Tuple[int, ...]
):
    if mask is None:
        return data.mean(dim=dim, keepdim=True), data.var(dim=dim, keepdim=True)
    mask = mask.float()
    mask_mean = torch.sum(data * mask * weights, dim=dim, keepdim=True) / torch.sum(
        mask * weights, dim=dim, keepdim=True
    ).clamp(min=1.0)
    # V1**2 - V2, V1: sum w_i, V2: sum w_i**2
    denom = torch.sum(weights * mask, dim=dim, keepdim=True).square() - torch.sum(
        (mask * weights).square(), dim=dim, keepdim=True
    )
    # correction is V1 / (V1**2 - V2), if w_i=1 => N/(N**2 - N) => 1/(N-1) (unbiased estimator of variance, cvd)
    correction_factor = torch.sum(mask * weights, dim=dim, keepdim=True) / denom.clamp(
        min=1.0
    )
    mask_var = correction_factor * torch.sum(
        weights * mask * (data - mask_mean) ** 2, dim=dim, keepdim=True
    )
    return mask_mean, mask_var


def stable_masked_mean_var(
    input: torch.Tensor, target: torch.Tensor, mask: torch.Tensor, dim: list[int]
):
    # recalculate mask with points in 95% confidence interval
    input_detach = input.detach()
    input_mean, input_var = masked_mean_var(input_detach, mask=mask, dim=dim)
    target_mean, target_var = masked_mean_var(target, mask=mask, dim=dim)
    input_std = (input_var).clip(min=1e-6).sqrt()
    target_std = (target_var).clip(min=1e-6).sqrt()
    stable_points_input = torch.logical_and(
        input_detach > input_mean - 1.96 * input_std,
        input_detach < input_mean + 1.96 * input_std,
    )
    stable_points_target = torch.logical_and(
        target > target_mean - 1.96 * target_std,
        target < target_mean + 1.96 * target_std,
    )
    stable_mask = stable_points_target & stable_points_input & mask

    input_mean, input_var = masked_mean_var(input, mask=stable_mask, dim=dim)
    target_mean, target_var = masked_mean_var(target, mask=stable_mask, dim=dim)
    return input_mean, input_var, target_mean, target_var, stable_mask


def ssi(
    input: torch.Tensor,
    target: torch.Tensor,
    mask: torch.Tensor,
    dim: list[int],
    *args,
    **kwargs,
) -> torch.Tensor:
    # recalculate mask with points in 95% confidence interval
    input_mean, input_var, target_mean, target_var, stable_mask = (
        stable_masked_mean_var(input, target, mask, dim)
    )

    # if target_var.min() < 1e-6:
    #     print(
    #         "Warning: target low",
    #         list(zip(target_var.squeeze().cpu().numpy(),
    #         target_mean.squeeze().cpu().numpy(),
    #         mask.reshape(target_var.shape[0], -1).sum(dim=-1).squeeze().cpu().numpy(),
    #         stable_mask.reshape(target_var.shape[0], -1).sum(dim=-1).squeeze().cpu().numpy()))
    #     )
    # if input_var.min() < 1e-6:
    #     print("Warning: input variance is too low", input_var.squeeze(), input_mean.squeeze())
    if input_var.isnan().any():
        print("Warning: input variance is nan")
    if input_var.isinf().any():
        print("Warning: input variance is isinf")
    if input_mean.isnan().any():
        print("Warning: input m is nan")
    if input_mean.isinf().any():
        print("Warning: input m is isinf")
    target_normalized = (target - target_mean) / FNS["sqrt"](target_var)
    input_normalized = (input - input_mean) / FNS["sqrt"](input_var)
    return input_normalized, target_normalized, stable_mask


def ssi_nd(
    input: torch.Tensor,
    target: torch.Tensor,
    mask: torch.Tensor,
    dim: list[int],
    input_info: torch.Tensor,
    target_info: torch.Tensor,
) -> torch.Tensor:
    input_mean, input_var, target_mean, target_var, stable_mask = (
        stable_masked_mean_var(input_info, target_info, mask, dim)
    )
    if input_var.isnan().any():
        print("Warning: input variance is nan")
    if input_var.isinf().any():
        print("Warning: input variance is isinf")
    if input_mean.isnan().any():
        print("Warning: input m is nan")
    if input_mean.isinf().any():
        print("Warning: input m is isinf")
    target_normalized = (target - target_mean) / FNS["sqrt"](target_var)
    input_normalized = (input - input_mean) / FNS["sqrt"](input_var)
    return input_normalized, target_normalized, stable_mask


def stable_ssi(
    input: torch.Tensor, target: torch.Tensor, mask: torch.Tensor, dim: list[int]
) -> torch.Tensor:
    input_mean, input_var = masked_mean_var(input, mask=mask, dim=dim)
    target_mean, target_var = masked_mean_var(target, mask=mask, dim=dim)
    target_normalized = (target - target_mean) / torch.sqrt(target_var.clamp(min=1e-6))
    input_normalized = (input - input_mean) / torch.sqrt(input_var.clamp(min=1e-6))
    return input_normalized, target_normalized, mask


def ind2sub(idx, cols):
    r = idx // cols
    c = idx % cols
    return r, c


def sub2ind(r, c, cols):
    idx = r * cols + c
    return idx


def l2(input_tensor: torch.Tensor, gamma: float = 1.0, *args, **kwargs) -> torch.Tensor:
    return (input_tensor / gamma) ** 2


def l1(input_tensor: torch.Tensor, gamma: float = 1.0, *args, **kwargs) -> torch.Tensor:
    return torch.abs(input_tensor)


def charbonnier(
    input_tensor: torch.Tensor, gamma: float = 1.0, *args, **kwargs
) -> torch.Tensor:
    return gamma * torch.sqrt(torch.square(input_tensor / gamma) + 1) - 1


def cauchy(
    input_tensor: torch.Tensor, gamma: float = 1.0, *args, **kwargs
) -> torch.Tensor:
    return gamma * torch.log(torch.square(input_tensor / gamma) + 1) + log(gamma * pi)


def geman_mcclure(
    input_tensor: torch.Tensor, gamma: float = 1.0, *args, **kwargs
) -> torch.Tensor:
    return gamma * torch.square(input_tensor) / (torch.square(input_tensor) + gamma)


def robust_loss(
    input_tensor: torch.Tensor, alpha: float, gamma: float = 1.0, *args, **kwargs
) -> torch.Tensor:
    coeff = abs(alpha - 2) / alpha
    power = torch.square(input_tensor / gamma) / abs(alpha - 2) + 1
    return (
        gamma * coeff * (torch.pow(power, alpha / 2) - 1)
    )  # mult gamma to keep grad magnitude invariant wrt gamma


REGRESSION_DICT = {
    "l2": l2,
    "l1": l1,
    "cauchy": cauchy,
    "charbonnier": charbonnier,
    "geman_mcclure": geman_mcclure,
    "robust_loss": robust_loss,
}