Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,298 Bytes
1ea89dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
from math import log, pi, prod
from typing import Any, Dict, List, Optional, Tuple
import torch
FNS = {
"sqrto": lambda x: torch.sqrt(x + 1),
"sqrt": lambda x: torch.sqrt(x + 1e-4),
"log": lambda x: torch.log(x + 1e-4),
"log1": lambda x: torch.log(x + 1),
# transition from log(1/x) to 1/x at x=100
# if x -> 0 : log(1/x), if x -> inf : log(1+1/x) -> 1/x + hot
"log1i": lambda x: torch.log(1 + 50 / (1e-4 + x)),
"log10": lambda x: torch.log10(1e-4 + x),
"log2": lambda x: torch.log2(1e-4 + x),
"linear": lambda x: x,
"square": torch.square,
"disp": lambda x: 1 / (x + 1e-4),
"disp1": lambda x: 1 / (1 + x),
}
FNS_INV = {
"sqrt": torch.square,
"log": torch.exp,
"log1": lambda x: torch.exp(x) - 1,
"linear": lambda x: x,
"square": torch.sqrt,
"disp": lambda x: 1 / x,
}
def masked_mean_var(
data: torch.Tensor, mask: torch.Tensor, dim: List[int], keepdim: bool = True
):
if mask is None:
return data.mean(dim=dim, keepdim=keepdim), data.var(dim=dim, keepdim=keepdim)
# if data[mask].isnan().any():
# print("Warning: NaN in masked_mean_var, valid_pixels before and after", mask.sum(dim=dim).squeeze(), (mask & ~data.isnan()).sum(dim=dim).squeeze())
mask = (mask & ~data.isnan().any(dim=1, keepdim=True)).float()
data = torch.nan_to_num(data, nan=0.0)
mask_sum = torch.sum(mask, dim=dim, keepdim=True)
mask_mean = torch.sum(data * mask, dim=dim, keepdim=True) / torch.clamp(
mask_sum, min=1.0
)
mask_var = torch.sum(
mask * (data - mask_mean) ** 2, dim=dim, keepdim=True
) / torch.clamp(mask_sum, min=1.0)
if not keepdim:
mask_mean, mask_var = mask_mean.squeeze(dim), mask_var.squeeze(dim)
return mask_mean, mask_var
def masked_mean(data: torch.Tensor, mask: torch.Tensor | None, dim: List[int]):
if mask is None:
return data.mean(dim=dim, keepdim=True)
mask = mask.float()
mask_sum = torch.sum(mask, dim=dim, keepdim=True)
mask_mean = torch.sum(
torch.nan_to_num(data, nan=0.0) * mask, dim=dim, keepdim=True
) / mask_sum.clamp(min=1.0)
return mask_mean
def masked_quantile(
data: torch.Tensor, mask: torch.Tensor | None, dims: List[int], q: float
):
"""
Compute the quantile of the data only where the mask is 1 along specified dimensions.
Args:
data (torch.Tensor): The input data tensor.
mask (torch.Tensor): The mask tensor with the same shape as data, containing 1s where data should be considered.
dims (list of int): The dimensions to compute the quantile over.
q (float): The quantile to compute, must be between 0 and 1.
Returns:
torch.Tensor: The quantile computed over the specified dimensions, ignoring masked values.
"""
masked_data = data * mask if mask is not None else data
# Get a list of all dimensions
all_dims = list(range(masked_data.dim()))
# Revert negative dimensions
dims = [d % masked_data.dim() for d in dims]
# Find the dimensions to keep (not included in the `dims` list)
keep_dims = [d for d in all_dims if d not in dims]
# Permute dimensions to bring `dims` to the front
permute_order = dims + keep_dims
permuted_data = masked_data.permute(permute_order)
# Reshape into 2D: (-1, remaining_dims)
collapsed_shape = (
-1,
prod([permuted_data.size(d) for d in range(len(dims), permuted_data.dim())]),
)
reshaped_data = permuted_data.reshape(collapsed_shape)
if mask is None:
return torch.quantile(reshaped_data, q, dim=0)
permuted_mask = mask.permute(permute_order)
reshaped_mask = permuted_mask.reshape(collapsed_shape)
# Calculate quantile along the first dimension where mask is true
quantiles = []
for i in range(reshaped_data.shape[1]):
valid_data = reshaped_data[:, i][reshaped_mask[:, i]]
if valid_data.numel() == 0:
# print("Warning: No valid data found for quantile calculation.")
quantiles.append(reshaped_data[:, i].min() * 0.99)
else:
quantiles.append(torch.quantile(valid_data, q, dim=0))
# Stack back into a tensor with reduced dimensions
quantiles = torch.stack(quantiles)
quantiles = quantiles.reshape(
[permuted_data.size(d) for d in range(len(dims), permuted_data.dim())]
)
return quantiles
def masked_median(data: torch.Tensor, mask: torch.Tensor, dim: List[int]):
ndim = data.ndim
data = data.flatten(ndim - len(dim))
mask = mask.flatten(ndim - len(dim))
mask_median = torch.median(data[..., mask], dim=-1).values
return mask_median
def masked_median_mad(data: torch.Tensor, mask: torch.Tensor, dim: List[int]):
ndim = data.ndim
data = data.flatten(ndim - len(dim))
mask = mask.flatten(ndim - len(dim))
mask_median = torch.median(data[mask], dim=-1, keepdim=True).values
mask_mad = masked_mean((data - mask_median).abs(), mask, dim=(-1,))
return mask_median, mask_mad
def masked_weighted_mean_var(
data: torch.Tensor, mask: torch.Tensor, weights: torch.Tensor, dim: Tuple[int, ...]
):
if mask is None:
return data.mean(dim=dim, keepdim=True), data.var(dim=dim, keepdim=True)
mask = mask.float()
mask_mean = torch.sum(data * mask * weights, dim=dim, keepdim=True) / torch.sum(
mask * weights, dim=dim, keepdim=True
).clamp(min=1.0)
# V1**2 - V2, V1: sum w_i, V2: sum w_i**2
denom = torch.sum(weights * mask, dim=dim, keepdim=True).square() - torch.sum(
(mask * weights).square(), dim=dim, keepdim=True
)
# correction is V1 / (V1**2 - V2), if w_i=1 => N/(N**2 - N) => 1/(N-1) (unbiased estimator of variance, cvd)
correction_factor = torch.sum(mask * weights, dim=dim, keepdim=True) / denom.clamp(
min=1.0
)
mask_var = correction_factor * torch.sum(
weights * mask * (data - mask_mean) ** 2, dim=dim, keepdim=True
)
return mask_mean, mask_var
def stable_masked_mean_var(
input: torch.Tensor, target: torch.Tensor, mask: torch.Tensor, dim: list[int]
):
# recalculate mask with points in 95% confidence interval
input_detach = input.detach()
input_mean, input_var = masked_mean_var(input_detach, mask=mask, dim=dim)
target_mean, target_var = masked_mean_var(target, mask=mask, dim=dim)
input_std = (input_var).clip(min=1e-6).sqrt()
target_std = (target_var).clip(min=1e-6).sqrt()
stable_points_input = torch.logical_and(
input_detach > input_mean - 1.96 * input_std,
input_detach < input_mean + 1.96 * input_std,
)
stable_points_target = torch.logical_and(
target > target_mean - 1.96 * target_std,
target < target_mean + 1.96 * target_std,
)
stable_mask = stable_points_target & stable_points_input & mask
input_mean, input_var = masked_mean_var(input, mask=stable_mask, dim=dim)
target_mean, target_var = masked_mean_var(target, mask=stable_mask, dim=dim)
return input_mean, input_var, target_mean, target_var, stable_mask
def ssi(
input: torch.Tensor,
target: torch.Tensor,
mask: torch.Tensor,
dim: list[int],
*args,
**kwargs,
) -> torch.Tensor:
# recalculate mask with points in 95% confidence interval
input_mean, input_var, target_mean, target_var, stable_mask = (
stable_masked_mean_var(input, target, mask, dim)
)
# if target_var.min() < 1e-6:
# print(
# "Warning: target low",
# list(zip(target_var.squeeze().cpu().numpy(),
# target_mean.squeeze().cpu().numpy(),
# mask.reshape(target_var.shape[0], -1).sum(dim=-1).squeeze().cpu().numpy(),
# stable_mask.reshape(target_var.shape[0], -1).sum(dim=-1).squeeze().cpu().numpy()))
# )
# if input_var.min() < 1e-6:
# print("Warning: input variance is too low", input_var.squeeze(), input_mean.squeeze())
if input_var.isnan().any():
print("Warning: input variance is nan")
if input_var.isinf().any():
print("Warning: input variance is isinf")
if input_mean.isnan().any():
print("Warning: input m is nan")
if input_mean.isinf().any():
print("Warning: input m is isinf")
target_normalized = (target - target_mean) / FNS["sqrt"](target_var)
input_normalized = (input - input_mean) / FNS["sqrt"](input_var)
return input_normalized, target_normalized, stable_mask
def ssi_nd(
input: torch.Tensor,
target: torch.Tensor,
mask: torch.Tensor,
dim: list[int],
input_info: torch.Tensor,
target_info: torch.Tensor,
) -> torch.Tensor:
input_mean, input_var, target_mean, target_var, stable_mask = (
stable_masked_mean_var(input_info, target_info, mask, dim)
)
if input_var.isnan().any():
print("Warning: input variance is nan")
if input_var.isinf().any():
print("Warning: input variance is isinf")
if input_mean.isnan().any():
print("Warning: input m is nan")
if input_mean.isinf().any():
print("Warning: input m is isinf")
target_normalized = (target - target_mean) / FNS["sqrt"](target_var)
input_normalized = (input - input_mean) / FNS["sqrt"](input_var)
return input_normalized, target_normalized, stable_mask
def stable_ssi(
input: torch.Tensor, target: torch.Tensor, mask: torch.Tensor, dim: list[int]
) -> torch.Tensor:
input_mean, input_var = masked_mean_var(input, mask=mask, dim=dim)
target_mean, target_var = masked_mean_var(target, mask=mask, dim=dim)
target_normalized = (target - target_mean) / torch.sqrt(target_var.clamp(min=1e-6))
input_normalized = (input - input_mean) / torch.sqrt(input_var.clamp(min=1e-6))
return input_normalized, target_normalized, mask
def ind2sub(idx, cols):
r = idx // cols
c = idx % cols
return r, c
def sub2ind(r, c, cols):
idx = r * cols + c
return idx
def l2(input_tensor: torch.Tensor, gamma: float = 1.0, *args, **kwargs) -> torch.Tensor:
return (input_tensor / gamma) ** 2
def l1(input_tensor: torch.Tensor, gamma: float = 1.0, *args, **kwargs) -> torch.Tensor:
return torch.abs(input_tensor)
def charbonnier(
input_tensor: torch.Tensor, gamma: float = 1.0, *args, **kwargs
) -> torch.Tensor:
return gamma * torch.sqrt(torch.square(input_tensor / gamma) + 1) - 1
def cauchy(
input_tensor: torch.Tensor, gamma: float = 1.0, *args, **kwargs
) -> torch.Tensor:
return gamma * torch.log(torch.square(input_tensor / gamma) + 1) + log(gamma * pi)
def geman_mcclure(
input_tensor: torch.Tensor, gamma: float = 1.0, *args, **kwargs
) -> torch.Tensor:
return gamma * torch.square(input_tensor) / (torch.square(input_tensor) + gamma)
def robust_loss(
input_tensor: torch.Tensor, alpha: float, gamma: float = 1.0, *args, **kwargs
) -> torch.Tensor:
coeff = abs(alpha - 2) / alpha
power = torch.square(input_tensor / gamma) / abs(alpha - 2) + 1
return (
gamma * coeff * (torch.pow(power, alpha / 2) - 1)
) # mult gamma to keep grad magnitude invariant wrt gamma
REGRESSION_DICT = {
"l2": l2,
"l1": l1,
"cauchy": cauchy,
"charbonnier": charbonnier,
"geman_mcclure": geman_mcclure,
"robust_loss": robust_loss,
}
|