Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,001 Bytes
1ea89dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import os
import pickle
import platform
import subprocess
import warnings
import cv2
import torch
import torch.utils.data.distributed
from torch import distributed as dist
from torch import multiprocessing as mp
_LOCAL_PROCESS_GROUP = None
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def get_local_rank() -> int:
"""
Returns:
The rank of the current process within the local (per-machine) process group.
"""
if not is_dist_avail_and_initialized():
return 0
assert _LOCAL_PROCESS_GROUP is not None
return dist.get_rank(group=_LOCAL_PROCESS_GROUP)
def get_local_size() -> int:
"""
Returns:
The size of the per-machine process group,
i.e. the number of processes per machine.
"""
if not is_dist_avail_and_initialized():
return 1
assert _LOCAL_PROCESS_GROUP is not None
return dist.get_world_size(group=_LOCAL_PROCESS_GROUP)
def get_world_size():
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def barrier():
if not is_dist_avail_and_initialized():
return
dist.barrier()
def is_main_process():
return get_rank() == 0
def is_rank_zero(args):
return args.rank == 0
def get_dist_info():
if dist.is_available() and dist.is_initialized():
rank = dist.get_rank()
world_size = dist.get_world_size()
else:
rank = 0
world_size = 1
return rank, world_size
def setup_multi_processes(cfg):
"""Setup multi-processing environment variables."""
# set multi-process start method as `fork` to speed up the training
if platform.system() != "Windows":
mp_start_method = cfg.get("mp_start_method", "fork")
current_method = mp.get_start_method(allow_none=True)
if current_method is not None and current_method != mp_start_method:
warnings.warn(
f"Multi-processing start method `{mp_start_method}` is "
f"different from the previous setting `{current_method}`."
f"It will be force set to `{mp_start_method}`. You can change "
f"this behavior by changing `mp_start_method` in your config."
)
mp.set_start_method(mp_start_method, force=True)
# disable opencv multithreading to avoid system being overloaded
# opencv_num_threads = cfg.get('opencv_num_threads', 0)
# cv2.setNumThreads(opencv_num_threads)
# setup OMP threads
# This code is referred from https://github.com/pytorch/pytorch/blob/master/torch/distributed/run.py # noqa
# workers_per_gpu = cfg.get('workers_per_gpu', 4)
# if 'OMP_NUM_THREADS' not in os.environ and workers_per_gpu > 1:
# omp_num_threads = 1
# warnings.warn(
# f'Setting OMP_NUM_THREADS environment variable for each process '
# f'to be {omp_num_threads} in default, to avoid your system being '
# f'overloaded, please further tune the variable for optimal '
# f'performance in your application as needed.')
# os.environ['OMP_NUM_THREADS'] = str(omp_num_threads)
# setup MKL threads
# if 'MKL_NUM_THREADS' not in os.environ and workers_per_gpu > 1:
# mkl_num_threads = os.environ.get('OMP_NUM_THREADS', 1)
# warnings.warn(
# f'Setting MKL_NUM_THREADS environment variable for each process '
# f'to be {mkl_num_threads} in default, to avoid your system being '
# f'overloaded, please further tune the variable for optimal '
# f'performance in your application as needed.')
# os.environ['MKL_NUM_THREADS'] = str(mkl_num_threads)
def setup_slurm(backend: str, port: str) -> None:
proc_id = int(os.environ["SLURM_PROCID"])
ntasks = int(os.environ["SLURM_NTASKS"])
node_list = os.environ["SLURM_NODELIST"]
num_gpus = torch.cuda.device_count()
torch.cuda.set_device(proc_id % num_gpus)
if "MASTER_ADDR" not in os.environ:
addr = subprocess.getoutput(f"scontrol show hostname {node_list} | head -n1")
os.environ["MASTER_PORT"] = str(port)
os.environ["MASTER_ADDR"] = addr
else:
addr = os.environ["MASTER_ADDR"]
os.environ["WORLD_SIZE"] = str(ntasks)
os.environ["LOCAL_RANK"] = str(proc_id % num_gpus)
os.environ["RANK"] = str(proc_id)
print(
proc_id,
ntasks,
num_gpus,
proc_id % num_gpus,
node_list,
addr,
os.environ["MASTER_PORT"],
os.system("nvidia-smi -L"),
)
dist.init_process_group(backend, rank=proc_id, world_size=ntasks)
def sync_tensor_across_gpus(t, dim=0, cat=True):
if t is None or not (dist.is_available() and dist.is_initialized()):
return t
t = torch.atleast_1d(t)
group = dist.group.WORLD
group_size = torch.distributed.get_world_size(group)
local_size = torch.tensor(t.size(dim), device=t.device)
all_sizes = [torch.zeros_like(local_size) for _ in range(group_size)]
dist.all_gather(all_sizes, local_size)
max_size = max(all_sizes)
size_diff = max_size.item() - local_size.item()
if size_diff:
padding = torch.zeros(size_diff, device=t.device, dtype=t.dtype)
t = torch.cat((t, padding))
gather_t_tensor = [torch.zeros_like(t) for _ in range(group_size)]
dist.all_gather(gather_t_tensor, t)
all_ts = []
for t, size in zip(gather_t_tensor, all_sizes):
all_ts.append(t[:size])
if cat:
return torch.cat(all_ts, dim=0)
return all_ts
def sync_string_across_gpus(keys: list[str], device, dim=0):
keys_serialized = pickle.dumps(keys, protocol=pickle.HIGHEST_PROTOCOL)
keys_serialized_tensor = (
torch.frombuffer(keys_serialized, dtype=torch.uint8).clone().to(device)
)
keys_serialized_tensor = sync_tensor_across_gpus(
keys_serialized_tensor, dim=0, cat=False
)
keys = [
key
for keys in keys_serialized_tensor
for key in pickle.loads(bytes(keys.cpu().tolist()))
]
return keys
def create_local_process_group() -> None:
num_workers_per_machine = torch.cuda.device_count()
global _LOCAL_PROCESS_GROUP
assert _LOCAL_PROCESS_GROUP is None
assert get_world_size() % num_workers_per_machine == 0
num_machines = get_world_size() // num_workers_per_machine
machine_rank = get_rank() // num_workers_per_machine
for i in range(num_machines):
ranks_on_i = list(
range(i * num_workers_per_machine, (i + 1) * num_workers_per_machine)
)
pg = dist.new_group(ranks_on_i)
if i == machine_rank:
_LOCAL_PROCESS_GROUP = pg
def _get_global_gloo_group():
if dist.get_backend() == "nccl":
return dist.new_group(backend="gloo")
else:
return dist.group.WORLD
def all_gather(data, group=None):
if get_world_size() == 1:
return [data]
if group is None:
group = (
_get_global_gloo_group()
) # use CPU group by default, to reduce GPU RAM usage.
world_size = dist.get_world_size(group)
if world_size == 1:
return [data]
output = [None for _ in range(world_size)]
dist.all_gather_object(output, data, group=group)
return output
def local_broadcast_process_authkey():
if get_local_size() == 1:
return
local_rank = get_local_rank()
authkey = bytes(mp.current_process().authkey)
all_keys = all_gather(authkey)
local_leader_key = all_keys[get_rank() - local_rank]
if authkey != local_leader_key:
# print("Process authkey is different from the key of local leader! workers are launched independently ??")
# print("Overwriting local authkey ...")
mp.current_process().authkey = local_leader_key
|