File size: 17,012 Bytes
1ea89dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
from typing import Tuple

import torch
from torch.nn import functional as F


# @torch.autocast(device_type="cuda", enabled=False, dtype=torch.float32)
def generate_rays(
    camera_intrinsics: torch.Tensor, image_shape: Tuple[int, int], noisy: bool = False
):
    batch_size, device, dtype = (
        camera_intrinsics.shape[0],
        camera_intrinsics.device,
        camera_intrinsics.dtype,
    )
    # print("CAMERA DTYPE", dtype)
    height, width = image_shape
    # Generate grid of pixel coordinates
    pixel_coords_x = torch.linspace(0, width - 1, width, device=device, dtype=dtype)
    pixel_coords_y = torch.linspace(0, height - 1, height, device=device, dtype=dtype)
    if noisy:
        pixel_coords_x += torch.rand_like(pixel_coords_x) - 0.5
        pixel_coords_y += torch.rand_like(pixel_coords_y) - 0.5
    pixel_coords = torch.stack(
        [pixel_coords_x.repeat(height, 1), pixel_coords_y.repeat(width, 1).t()], dim=2
    )  # (H, W, 2)
    pixel_coords = pixel_coords + 0.5

    # Calculate ray directions
    intrinsics_inv = torch.inverse(camera_intrinsics.float()).to(dtype)
    homogeneous_coords = torch.cat(
        [pixel_coords, torch.ones_like(pixel_coords[:, :, :1])], dim=2
    )  # (H, W, 3)
    ray_directions = torch.matmul(
        intrinsics_inv, homogeneous_coords.permute(2, 0, 1).flatten(1)
    )  # (3, H*W)

    # unstable normalization, need float32?
    ray_directions = F.normalize(ray_directions, dim=1)  # (B, 3, H*W)
    ray_directions = ray_directions.permute(0, 2, 1)  # (B, H*W, 3)

    theta = torch.atan2(ray_directions[..., 0], ray_directions[..., -1])
    phi = torch.acos(ray_directions[..., 1])
    # pitch = torch.asin(ray_directions[..., 1])
    # roll = torch.atan2(ray_directions[..., 0], - ray_directions[..., 1])
    angles = torch.stack([theta, phi], dim=-1)
    return ray_directions, angles


@torch.jit.script
def spherical_zbuffer_to_euclidean(spherical_tensor: torch.Tensor) -> torch.Tensor:
    theta = spherical_tensor[..., 0]  # Extract polar angle
    phi = spherical_tensor[..., 1]  # Extract azimuthal angle
    z = spherical_tensor[..., 2]  # Extract zbuffer depth

    # y = r * cos(phi)
    # x = r * sin(phi) * sin(theta)
    # z = r * sin(phi) * cos(theta)
    # =>
    # r = z / sin(phi) / cos(theta)
    # y = z / (sin(phi) / cos(phi)) / cos(theta)
    # x = z * sin(theta) / cos(theta)
    x = z * torch.tan(theta)
    y = z / torch.tan(phi) / torch.cos(theta)

    euclidean_tensor = torch.stack((x, y, z), dim=-1)
    return euclidean_tensor


@torch.jit.script
def spherical_to_euclidean(spherical_tensor: torch.Tensor) -> torch.Tensor:
    theta = spherical_tensor[..., 0]  # Extract polar angle
    phi = spherical_tensor[..., 1]  # Extract azimuthal angle
    r = spherical_tensor[..., 2]  # Extract radius
    # x = r * torch.sin(theta) * torch.sin(phi)
    # y = r * torch.cos(theta)
    # z = r * torch.cos(phi) * torch.sin(theta)
    x = r * torch.sin(theta) * torch.cos(phi)
    y = r * torch.sin(theta) * torch.sin(phi)
    z = r * torch.cos(theta)
    euclidean_tensor = torch.stack((x, y, z), dim=-1)
    return euclidean_tensor


@torch.jit.script
def euclidean_to_spherical(spherical_tensor: torch.Tensor) -> torch.Tensor:
    x = spherical_tensor[..., 0]  # Extract polar angle
    y = spherical_tensor[..., 1]  # Extract azimuthal angle
    z = spherical_tensor[..., 2]  # Extract radius
    # y = r * cos(phi)
    # x = r * sin(phi) * sin(theta)
    # z = r * sin(phi) * cos(theta)
    r = torch.sqrt(x**2 + y**2 + z**2)
    theta = torch.atan2(x / r, z / r)
    phi = torch.acos(y / r)

    euclidean_tensor = torch.stack((theta, phi, r), dim=-1)
    return euclidean_tensor


@torch.jit.script
def euclidean_to_spherical_zbuffer(euclidean_tensor: torch.Tensor) -> torch.Tensor:
    pitch = torch.asin(euclidean_tensor[..., 1])
    yaw = torch.atan2(euclidean_tensor[..., 0], euclidean_tensor[..., -1])
    z = euclidean_tensor[..., 2]  # Extract zbuffer depth
    euclidean_tensor = torch.stack((pitch, yaw, z), dim=-1)
    return euclidean_tensor


@torch.autocast(device_type="cuda", enabled=False, dtype=torch.float32)
def unproject_points(
    depth: torch.Tensor, camera_intrinsics: torch.Tensor
) -> torch.Tensor:
    """
    Unprojects a batch of depth maps to 3D point clouds using camera intrinsics.

    Args:
        depth (torch.Tensor): Batch of depth maps of shape (B, 1, H, W).
        camera_intrinsics (torch.Tensor): Camera intrinsic matrix of shape (B, 3, 3).

    Returns:
        torch.Tensor: Batch of 3D point clouds of shape (B, 3, H, W).
    """
    batch_size, _, height, width = depth.shape
    device = depth.device

    # Create pixel grid
    y_coords, x_coords = torch.meshgrid(
        torch.arange(height, device=device),
        torch.arange(width, device=device),
        indexing="ij",
    )
    pixel_coords = torch.stack((x_coords, y_coords), dim=-1)  # (H, W, 2)

    # Get homogeneous coords (u v 1)
    pixel_coords_homogeneous = torch.cat(
        (pixel_coords, torch.ones((height, width, 1), device=device)), dim=-1
    )
    pixel_coords_homogeneous = pixel_coords_homogeneous.permute(2, 0, 1).flatten(
        1
    )  # (3, H*W)
    # Apply K^-1 @ (u v 1): [B, 3, 3] @ [3, H*W] -> [B, 3, H*W]
    camera_intrinsics_inv = camera_intrinsics.clone()
    # invert camera intrinsics
    camera_intrinsics_inv[:, 0, 0] = 1 / camera_intrinsics_inv[:, 0, 0]
    camera_intrinsics_inv[:, 1, 1] = 1 / camera_intrinsics_inv[:, 1, 1]

    unprojected_points = camera_intrinsics_inv @ pixel_coords_homogeneous  # (B, 3, H*W)
    unprojected_points = unprojected_points.view(
        batch_size, 3, height, width
    )  # (B, 3, H, W)
    unprojected_points = unprojected_points * depth  # (B, 3, H, W)
    return unprojected_points


@torch.jit.script
def project_points(
    points_3d: torch.Tensor,
    intrinsic_matrix: torch.Tensor,
    image_shape: Tuple[int, int],
) -> torch.Tensor:
    # Project 3D points onto the image plane via intrinsics (u v w) = (x y z) @ K^T
    points_2d = torch.matmul(points_3d, intrinsic_matrix.transpose(1, 2))

    # Normalize projected points: (u v w) -> (u / w, v / w, 1)
    points_2d = points_2d[..., :2] / points_2d[..., 2:]

    # To pixels (rounding!!!), no int as it breaks gradient
    points_2d = points_2d.round()

    # pointa need to be inside the image (can it diverge onto all points out???)
    valid_mask = (
        (points_2d[..., 0] >= 0)
        & (points_2d[..., 0] < image_shape[1])
        & (points_2d[..., 1] >= 0)
        & (points_2d[..., 1] < image_shape[0])
    )

    # Calculate the flat indices of the valid pixels
    flat_points_2d = points_2d[..., 0] + points_2d[..., 1] * image_shape[1]
    flat_indices = flat_points_2d.long()

    # Create depth maps and counts using scatter_add, (B, H, W)
    depth_maps = torch.zeros(
        [points_3d.shape[0], *image_shape], device=points_3d.device
    )
    counts = torch.zeros([points_3d.shape[0], *image_shape], device=points_3d.device)

    # Loop over batches to apply masks and accumulate depth/count values
    for i in range(points_3d.shape[0]):
        valid_indices = flat_indices[i, valid_mask[i]]
        depth_maps[i].view(-1).scatter_add_(
            0, valid_indices, points_3d[i, valid_mask[i], 2]
        )
        counts[i].view(-1).scatter_add_(
            0, valid_indices, torch.ones_like(points_3d[i, valid_mask[i], 2])
        )

    # Calculate mean depth for each pixel in each batch
    mean_depth_maps = depth_maps / counts.clamp(min=1.0)
    return mean_depth_maps.reshape(-1, 1, *image_shape)  # (B, 1, H, W)


@torch.jit.script
def downsample(data: torch.Tensor, downsample_factor: int = 2):
    N, _, H, W = data.shape
    data = data.view(
        N,
        H // downsample_factor,
        downsample_factor,
        W // downsample_factor,
        downsample_factor,
        1,
    )
    data = data.permute(0, 1, 3, 5, 2, 4).contiguous()
    data = data.view(-1, downsample_factor * downsample_factor)
    data_tmp = torch.where(data == 0.0, 1e5 * torch.ones_like(data), data)
    data = torch.min(data_tmp, dim=-1).values
    data = data.view(N, 1, H // downsample_factor, W // downsample_factor)
    data = torch.where(data > 1000, torch.zeros_like(data), data)
    return data


@torch.jit.script
def flat_interpolate(
    flat_tensor: torch.Tensor,
    old: Tuple[int, int],
    new: Tuple[int, int],
    antialias: bool = False,
    mode: str = "bilinear",
) -> torch.Tensor:
    if old[0] == new[0] and old[1] == new[1]:
        return flat_tensor
    tensor = flat_tensor.view(flat_tensor.shape[0], old[0], old[1], -1).permute(
        0, 3, 1, 2
    )  # b c h w
    tensor_interp = F.interpolate(
        tensor,
        size=(new[0], new[1]),
        mode=mode,
        align_corners=False,
        antialias=antialias,
    )
    flat_tensor_interp = tensor_interp.view(
        flat_tensor.shape[0], -1, new[0] * new[1]
    ).permute(
        0, 2, 1
    )  # b (h w) c
    return flat_tensor_interp.contiguous()


# # @torch.jit.script
# def displacement_relative_neighbour(gt: torch.Tensor, mask: torch.Tensor = None, kernel_size: int = 7, ndim: int =4):
#     pad = kernel_size // 2
#     n_neighbours = int(kernel_size**2)

#     # when torchscipt will support nested generators in listcomp or usage of range
#     # in product(range_, range_), then use listcomp, so far speedup ~5% wrt std python
#     if mask is None:
#         mask = torch.ones_like(gt).bool()

#     lst_gts, lst_masks = [], []
#     for i in range(-kernel_size//2 + 1, kernel_size//2 + 1):
#         for j in range(-kernel_size//2 + 1, kernel_size//2 + 1):
#             if i != 0 or j != 0:
#                 lst_gts.append(torch.roll(gt, shifts=(i, j), dims=(-2, -1)))
#                 lst_masks.append(torch.roll(F.pad(mask, (pad,) * 4), shifts=(i, j), dims=(-2, -1)))
#     gts = torch.cat(lst_gts, dim=-3)
#     masks = torch.cat(lst_masks, dim=-3)

#     masks = masks[..., pad:-pad, pad:-pad]
#     masks[~mask.repeat(*(1,) * (ndim - 3), n_neighbours-1, 1, 1,)] = False # No displacement known if seed is missing
#     log_gts = gts.clamp(min=1e-6).log() - gt.repeat(*(1,) * (ndim - 3), n_neighbours-1, 1, 1).clamp(min=1e-6).log()
#     return log_gts, masks


# @torch.jit.script
# def antidisplacement_relative_neighbour(preds: torch.Tensor, kernel_size: int = 7):
#     lst_preds, lst_masks = [], []
#     cnt = 0
#     pad = kernel_size // 2
#     mask = F.pad(torch.ones((preds.shape[0], 1, preds.shape[-2], preds.shape[-1]), device=preds.device), (pad,) * 4)
#     for i in range(-kernel_size//2 + 1, kernel_size//2 + 1):
#         for j in range(-kernel_size//2 + 1, kernel_size//2 + 1):
#             if i != 0 or j !=0:
#                 lst_preds.append(torch.roll(preds[:, cnt], shifts=(-i, -j), dims=(-2, -1)))
#                 lst_masks.append(torch.roll(mask, shifts=(-i, -j), dims=(-2, -1)))
#                 cnt += 1
#     preds_ensamble = torch.stack(lst_preds, dim=1)
#     masks = torch.cat(lst_masks, dim=1)
#     masks = masks[..., pad:-pad, pad:-pad]
#     return preds_ensamble, masks


# def unproject(uv, fx, fy, cx, cy, xi=0, alpha=0):
#     u, v = uv.unbind(dim=1)
#     mx = (u - cx) / fx
#     my = (v - cy) / fy
#     r_square = mx ** 2 + my ** 2
#     root = 1 - (2 * alpha - 1) * r_square
#     valid_mask = root >= 0
#     root[~valid_mask] = 0.0
#     mz = (1 - (alpha ** 2) * r_square) / (alpha * torch.sqrt(root) + (1 - alpha))
#     coeff = (mz * xi + torch.sqrt(mz ** 2 + (1 - xi ** 2) * r_square)) / (mz ** 2 + r_square)

#     x = coeff * mx
#     y = coeff * my
#     z = coeff * mz - xi
#     # z = z.clamp(min=1e-7)

#     x_norm = x / z
#     y_norm = y / z
#     z_norm = z / z
#     xnorm = torch.stack(( x_norm, y_norm, z_norm ), dim=1)
#     # print("unproj", xnorm.shape, xnorm[:, -1].mean())

#     return xnorm, valid_mask.unsqueeze(1).repeat(1, 3, 1, 1)


# def project(point3D, fx, fy, cx, cy, xi=0, alpha=0):
#     B, C, H, W = point3D.shape
#     x, y, z = point3D.unbind(dim=1)
#     z = z.clamp(min=1e-7)
#     d_1 = torch.sqrt( x ** 2 + y ** 2 + z ** 2 )
#     d_2 = torch.sqrt( x ** 2 + y ** 2 + (xi * d_1 + z) ** 2 )

#     div = alpha * d_2 + (1 - alpha) * (xi * d_1 + z)
#     Xnorm = fx * x / div + cx
#     Ynorm = fy * y / div + cy

#     coords = torch.stack([Xnorm, Ynorm], dim=1)
#     w1 = torch.where(alpha <= 0.5, alpha / (1 - alpha), (1 - alpha) / alpha)
#     w2 = w1 + xi / ((2 * w1 * xi + xi ** 2 + 1) ** 0.5)
#     valid_mask = z > - w2 * d_1

#     # Return pixel coordinates
#     return coords, valid_mask.unsqueeze(1).repeat(1, 2, 1, 1)


@torch.autocast(device_type="cuda", enabled=False, dtype=torch.float32)
def unproject(uv, fx, fy, cx, cy, alpha=None, beta=None):
    uv = uv.float()
    fx = fx.float()
    fy = fy.float()
    cx = cx.float()
    cy = cy.float()
    u, v = uv.unbind(dim=1)
    alpha = torch.zeros_like(fx) if alpha is None else alpha.float()
    beta = torch.ones_like(fx) if beta is None else beta.float()
    mx = (u - cx) / fx
    my = (v - cy) / fy
    r_square = mx**2 + my**2
    valid_mask = r_square < torch.where(alpha < 0.5, 1e6, 1 / (beta * (2 * alpha - 1)))
    sqrt_val = 1 - (2 * alpha - 1) * beta * r_square
    mz = (1 - beta * (alpha**2) * r_square) / (
        alpha * torch.sqrt(sqrt_val.clip(min=1e-5)) + (1 - alpha)
    )
    coeff = 1 / torch.sqrt(mx**2 + my**2 + mz**2 + 1e-5)

    x = coeff * mx
    y = coeff * my
    z = coeff * mz
    valid_mask = valid_mask & (z > 1e-3)

    xnorm = torch.stack((x, y, z.clamp(1e-3)), dim=1)
    return xnorm, valid_mask.unsqueeze(1)


@torch.autocast(device_type="cuda", enabled=False, dtype=torch.float32)
def project(point3D, fx, fy, cx, cy, alpha=None, beta=None):
    H, W = point3D.shape[-2:]
    alpha = torch.zeros_like(fx) if alpha is None else alpha
    beta = torch.ones_like(fx) if beta is None else beta
    x, y, z = point3D.unbind(dim=1)
    d = torch.sqrt(beta * (x**2 + y**2) + z**2)

    x = x / (alpha * d + (1 - alpha) * z).clip(min=1e-3)
    y = y / (alpha * d + (1 - alpha) * z).clip(min=1e-3)

    Xnorm = fx * x + cx
    Ynorm = fy * y + cy

    coords = torch.stack([Xnorm, Ynorm], dim=1)

    invalid = (
        (coords[:, 0] < 0)
        | (coords[:, 0] > W)
        | (coords[:, 1] < 0)
        | (coords[:, 1] > H)
        | (z < 0)
    )

    # Return pixel coordinates
    return coords, (~invalid).unsqueeze(1)


def rays2angles(rays: torch.Tensor) -> torch.Tensor:
    theta = torch.atan2(rays[..., 0], rays[..., -1])
    phi = torch.acos(rays[..., 1])
    angles = torch.stack([theta, phi], dim=-1)
    return angles


@torch.jit.script
def dilate(image, kernel_size: int | tuple[int, int]):
    if isinstance(kernel_size, int):
        kernel_size = (kernel_size, kernel_size)
    device, dtype = image.device, image.dtype
    padding = (kernel_size[0] // 2, kernel_size[1] // 2)
    kernel = torch.ones((1, 1, *kernel_size), dtype=torch.float32, device=image.device)
    dilated_image = F.conv2d(image.float(), kernel, padding=padding, stride=1)
    dilated_image = torch.where(
        dilated_image > 0,
        torch.tensor(1.0, device=device),
        torch.tensor(0.0, device=device),
    )
    return dilated_image.to(dtype)


@torch.jit.script
def erode(image, kernel_size: int | tuple[int, int]):
    if isinstance(kernel_size, int):
        kernel_size = (kernel_size, kernel_size)
    device, dtype = image.device, image.dtype
    padding = (kernel_size[0] // 2, kernel_size[1] // 2)
    kernel = torch.ones((1, 1, *kernel_size), dtype=torch.float32, device=image.device)
    eroded_image = F.conv2d(image.float(), kernel, padding=padding, stride=1)
    eroded_image = torch.where(
        eroded_image == (kernel_size[0] * kernel_size[1]),
        torch.tensor(1.0, device=device),
        torch.tensor(0.0, device=device),
    )
    return eroded_image.to(dtype)


@torch.jit.script
def iou(mask1: torch.Tensor, mask2: torch.Tensor) -> torch.Tensor:
    device = mask1.device

    # Ensure the masks are binary (0 or 1)
    mask1 = mask1.to(torch.bool)
    mask2 = mask2.to(torch.bool)

    # Compute intersection and union
    intersection = torch.sum(mask1 & mask2).to(torch.float32)
    union = torch.sum(mask1 | mask2).to(torch.float32)

    # Compute IoU
    iou = intersection / union.clip(min=1.0)

    return iou


if __name__ == "__main__":
    kernel_size = 3
    image = torch.tensor(
        [
            [
                [
                    [1, 1, 1, 1, 1],
                    [1, 1, 1, 1, 1],
                    [1, 1, 1, 1, 1],
                    [1, 1, 1, 1, 1],
                    [1, 1, 1, 1, 1],
                ]
            ]
        ],
        dtype=torch.bool,
    )

    print("testing dilate and erode, with image:\n", image, image.shape)

    # Perform dilation
    dilated_image = dilate(image, kernel_size)
    print("Dilated Image:\n", dilated_image)

    # Perform erosion
    eroded_image = erode(image, kernel_size)
    print("Eroded Image:\n", eroded_image)