Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,012 Bytes
1ea89dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 |
from typing import Tuple
import torch
from torch.nn import functional as F
# @torch.autocast(device_type="cuda", enabled=False, dtype=torch.float32)
def generate_rays(
camera_intrinsics: torch.Tensor, image_shape: Tuple[int, int], noisy: bool = False
):
batch_size, device, dtype = (
camera_intrinsics.shape[0],
camera_intrinsics.device,
camera_intrinsics.dtype,
)
# print("CAMERA DTYPE", dtype)
height, width = image_shape
# Generate grid of pixel coordinates
pixel_coords_x = torch.linspace(0, width - 1, width, device=device, dtype=dtype)
pixel_coords_y = torch.linspace(0, height - 1, height, device=device, dtype=dtype)
if noisy:
pixel_coords_x += torch.rand_like(pixel_coords_x) - 0.5
pixel_coords_y += torch.rand_like(pixel_coords_y) - 0.5
pixel_coords = torch.stack(
[pixel_coords_x.repeat(height, 1), pixel_coords_y.repeat(width, 1).t()], dim=2
) # (H, W, 2)
pixel_coords = pixel_coords + 0.5
# Calculate ray directions
intrinsics_inv = torch.inverse(camera_intrinsics.float()).to(dtype)
homogeneous_coords = torch.cat(
[pixel_coords, torch.ones_like(pixel_coords[:, :, :1])], dim=2
) # (H, W, 3)
ray_directions = torch.matmul(
intrinsics_inv, homogeneous_coords.permute(2, 0, 1).flatten(1)
) # (3, H*W)
# unstable normalization, need float32?
ray_directions = F.normalize(ray_directions, dim=1) # (B, 3, H*W)
ray_directions = ray_directions.permute(0, 2, 1) # (B, H*W, 3)
theta = torch.atan2(ray_directions[..., 0], ray_directions[..., -1])
phi = torch.acos(ray_directions[..., 1])
# pitch = torch.asin(ray_directions[..., 1])
# roll = torch.atan2(ray_directions[..., 0], - ray_directions[..., 1])
angles = torch.stack([theta, phi], dim=-1)
return ray_directions, angles
@torch.jit.script
def spherical_zbuffer_to_euclidean(spherical_tensor: torch.Tensor) -> torch.Tensor:
theta = spherical_tensor[..., 0] # Extract polar angle
phi = spherical_tensor[..., 1] # Extract azimuthal angle
z = spherical_tensor[..., 2] # Extract zbuffer depth
# y = r * cos(phi)
# x = r * sin(phi) * sin(theta)
# z = r * sin(phi) * cos(theta)
# =>
# r = z / sin(phi) / cos(theta)
# y = z / (sin(phi) / cos(phi)) / cos(theta)
# x = z * sin(theta) / cos(theta)
x = z * torch.tan(theta)
y = z / torch.tan(phi) / torch.cos(theta)
euclidean_tensor = torch.stack((x, y, z), dim=-1)
return euclidean_tensor
@torch.jit.script
def spherical_to_euclidean(spherical_tensor: torch.Tensor) -> torch.Tensor:
theta = spherical_tensor[..., 0] # Extract polar angle
phi = spherical_tensor[..., 1] # Extract azimuthal angle
r = spherical_tensor[..., 2] # Extract radius
# x = r * torch.sin(theta) * torch.sin(phi)
# y = r * torch.cos(theta)
# z = r * torch.cos(phi) * torch.sin(theta)
x = r * torch.sin(theta) * torch.cos(phi)
y = r * torch.sin(theta) * torch.sin(phi)
z = r * torch.cos(theta)
euclidean_tensor = torch.stack((x, y, z), dim=-1)
return euclidean_tensor
@torch.jit.script
def euclidean_to_spherical(spherical_tensor: torch.Tensor) -> torch.Tensor:
x = spherical_tensor[..., 0] # Extract polar angle
y = spherical_tensor[..., 1] # Extract azimuthal angle
z = spherical_tensor[..., 2] # Extract radius
# y = r * cos(phi)
# x = r * sin(phi) * sin(theta)
# z = r * sin(phi) * cos(theta)
r = torch.sqrt(x**2 + y**2 + z**2)
theta = torch.atan2(x / r, z / r)
phi = torch.acos(y / r)
euclidean_tensor = torch.stack((theta, phi, r), dim=-1)
return euclidean_tensor
@torch.jit.script
def euclidean_to_spherical_zbuffer(euclidean_tensor: torch.Tensor) -> torch.Tensor:
pitch = torch.asin(euclidean_tensor[..., 1])
yaw = torch.atan2(euclidean_tensor[..., 0], euclidean_tensor[..., -1])
z = euclidean_tensor[..., 2] # Extract zbuffer depth
euclidean_tensor = torch.stack((pitch, yaw, z), dim=-1)
return euclidean_tensor
@torch.autocast(device_type="cuda", enabled=False, dtype=torch.float32)
def unproject_points(
depth: torch.Tensor, camera_intrinsics: torch.Tensor
) -> torch.Tensor:
"""
Unprojects a batch of depth maps to 3D point clouds using camera intrinsics.
Args:
depth (torch.Tensor): Batch of depth maps of shape (B, 1, H, W).
camera_intrinsics (torch.Tensor): Camera intrinsic matrix of shape (B, 3, 3).
Returns:
torch.Tensor: Batch of 3D point clouds of shape (B, 3, H, W).
"""
batch_size, _, height, width = depth.shape
device = depth.device
# Create pixel grid
y_coords, x_coords = torch.meshgrid(
torch.arange(height, device=device),
torch.arange(width, device=device),
indexing="ij",
)
pixel_coords = torch.stack((x_coords, y_coords), dim=-1) # (H, W, 2)
# Get homogeneous coords (u v 1)
pixel_coords_homogeneous = torch.cat(
(pixel_coords, torch.ones((height, width, 1), device=device)), dim=-1
)
pixel_coords_homogeneous = pixel_coords_homogeneous.permute(2, 0, 1).flatten(
1
) # (3, H*W)
# Apply K^-1 @ (u v 1): [B, 3, 3] @ [3, H*W] -> [B, 3, H*W]
camera_intrinsics_inv = camera_intrinsics.clone()
# invert camera intrinsics
camera_intrinsics_inv[:, 0, 0] = 1 / camera_intrinsics_inv[:, 0, 0]
camera_intrinsics_inv[:, 1, 1] = 1 / camera_intrinsics_inv[:, 1, 1]
unprojected_points = camera_intrinsics_inv @ pixel_coords_homogeneous # (B, 3, H*W)
unprojected_points = unprojected_points.view(
batch_size, 3, height, width
) # (B, 3, H, W)
unprojected_points = unprojected_points * depth # (B, 3, H, W)
return unprojected_points
@torch.jit.script
def project_points(
points_3d: torch.Tensor,
intrinsic_matrix: torch.Tensor,
image_shape: Tuple[int, int],
) -> torch.Tensor:
# Project 3D points onto the image plane via intrinsics (u v w) = (x y z) @ K^T
points_2d = torch.matmul(points_3d, intrinsic_matrix.transpose(1, 2))
# Normalize projected points: (u v w) -> (u / w, v / w, 1)
points_2d = points_2d[..., :2] / points_2d[..., 2:]
# To pixels (rounding!!!), no int as it breaks gradient
points_2d = points_2d.round()
# pointa need to be inside the image (can it diverge onto all points out???)
valid_mask = (
(points_2d[..., 0] >= 0)
& (points_2d[..., 0] < image_shape[1])
& (points_2d[..., 1] >= 0)
& (points_2d[..., 1] < image_shape[0])
)
# Calculate the flat indices of the valid pixels
flat_points_2d = points_2d[..., 0] + points_2d[..., 1] * image_shape[1]
flat_indices = flat_points_2d.long()
# Create depth maps and counts using scatter_add, (B, H, W)
depth_maps = torch.zeros(
[points_3d.shape[0], *image_shape], device=points_3d.device
)
counts = torch.zeros([points_3d.shape[0], *image_shape], device=points_3d.device)
# Loop over batches to apply masks and accumulate depth/count values
for i in range(points_3d.shape[0]):
valid_indices = flat_indices[i, valid_mask[i]]
depth_maps[i].view(-1).scatter_add_(
0, valid_indices, points_3d[i, valid_mask[i], 2]
)
counts[i].view(-1).scatter_add_(
0, valid_indices, torch.ones_like(points_3d[i, valid_mask[i], 2])
)
# Calculate mean depth for each pixel in each batch
mean_depth_maps = depth_maps / counts.clamp(min=1.0)
return mean_depth_maps.reshape(-1, 1, *image_shape) # (B, 1, H, W)
@torch.jit.script
def downsample(data: torch.Tensor, downsample_factor: int = 2):
N, _, H, W = data.shape
data = data.view(
N,
H // downsample_factor,
downsample_factor,
W // downsample_factor,
downsample_factor,
1,
)
data = data.permute(0, 1, 3, 5, 2, 4).contiguous()
data = data.view(-1, downsample_factor * downsample_factor)
data_tmp = torch.where(data == 0.0, 1e5 * torch.ones_like(data), data)
data = torch.min(data_tmp, dim=-1).values
data = data.view(N, 1, H // downsample_factor, W // downsample_factor)
data = torch.where(data > 1000, torch.zeros_like(data), data)
return data
@torch.jit.script
def flat_interpolate(
flat_tensor: torch.Tensor,
old: Tuple[int, int],
new: Tuple[int, int],
antialias: bool = False,
mode: str = "bilinear",
) -> torch.Tensor:
if old[0] == new[0] and old[1] == new[1]:
return flat_tensor
tensor = flat_tensor.view(flat_tensor.shape[0], old[0], old[1], -1).permute(
0, 3, 1, 2
) # b c h w
tensor_interp = F.interpolate(
tensor,
size=(new[0], new[1]),
mode=mode,
align_corners=False,
antialias=antialias,
)
flat_tensor_interp = tensor_interp.view(
flat_tensor.shape[0], -1, new[0] * new[1]
).permute(
0, 2, 1
) # b (h w) c
return flat_tensor_interp.contiguous()
# # @torch.jit.script
# def displacement_relative_neighbour(gt: torch.Tensor, mask: torch.Tensor = None, kernel_size: int = 7, ndim: int =4):
# pad = kernel_size // 2
# n_neighbours = int(kernel_size**2)
# # when torchscipt will support nested generators in listcomp or usage of range
# # in product(range_, range_), then use listcomp, so far speedup ~5% wrt std python
# if mask is None:
# mask = torch.ones_like(gt).bool()
# lst_gts, lst_masks = [], []
# for i in range(-kernel_size//2 + 1, kernel_size//2 + 1):
# for j in range(-kernel_size//2 + 1, kernel_size//2 + 1):
# if i != 0 or j != 0:
# lst_gts.append(torch.roll(gt, shifts=(i, j), dims=(-2, -1)))
# lst_masks.append(torch.roll(F.pad(mask, (pad,) * 4), shifts=(i, j), dims=(-2, -1)))
# gts = torch.cat(lst_gts, dim=-3)
# masks = torch.cat(lst_masks, dim=-3)
# masks = masks[..., pad:-pad, pad:-pad]
# masks[~mask.repeat(*(1,) * (ndim - 3), n_neighbours-1, 1, 1,)] = False # No displacement known if seed is missing
# log_gts = gts.clamp(min=1e-6).log() - gt.repeat(*(1,) * (ndim - 3), n_neighbours-1, 1, 1).clamp(min=1e-6).log()
# return log_gts, masks
# @torch.jit.script
# def antidisplacement_relative_neighbour(preds: torch.Tensor, kernel_size: int = 7):
# lst_preds, lst_masks = [], []
# cnt = 0
# pad = kernel_size // 2
# mask = F.pad(torch.ones((preds.shape[0], 1, preds.shape[-2], preds.shape[-1]), device=preds.device), (pad,) * 4)
# for i in range(-kernel_size//2 + 1, kernel_size//2 + 1):
# for j in range(-kernel_size//2 + 1, kernel_size//2 + 1):
# if i != 0 or j !=0:
# lst_preds.append(torch.roll(preds[:, cnt], shifts=(-i, -j), dims=(-2, -1)))
# lst_masks.append(torch.roll(mask, shifts=(-i, -j), dims=(-2, -1)))
# cnt += 1
# preds_ensamble = torch.stack(lst_preds, dim=1)
# masks = torch.cat(lst_masks, dim=1)
# masks = masks[..., pad:-pad, pad:-pad]
# return preds_ensamble, masks
# def unproject(uv, fx, fy, cx, cy, xi=0, alpha=0):
# u, v = uv.unbind(dim=1)
# mx = (u - cx) / fx
# my = (v - cy) / fy
# r_square = mx ** 2 + my ** 2
# root = 1 - (2 * alpha - 1) * r_square
# valid_mask = root >= 0
# root[~valid_mask] = 0.0
# mz = (1 - (alpha ** 2) * r_square) / (alpha * torch.sqrt(root) + (1 - alpha))
# coeff = (mz * xi + torch.sqrt(mz ** 2 + (1 - xi ** 2) * r_square)) / (mz ** 2 + r_square)
# x = coeff * mx
# y = coeff * my
# z = coeff * mz - xi
# # z = z.clamp(min=1e-7)
# x_norm = x / z
# y_norm = y / z
# z_norm = z / z
# xnorm = torch.stack(( x_norm, y_norm, z_norm ), dim=1)
# # print("unproj", xnorm.shape, xnorm[:, -1].mean())
# return xnorm, valid_mask.unsqueeze(1).repeat(1, 3, 1, 1)
# def project(point3D, fx, fy, cx, cy, xi=0, alpha=0):
# B, C, H, W = point3D.shape
# x, y, z = point3D.unbind(dim=1)
# z = z.clamp(min=1e-7)
# d_1 = torch.sqrt( x ** 2 + y ** 2 + z ** 2 )
# d_2 = torch.sqrt( x ** 2 + y ** 2 + (xi * d_1 + z) ** 2 )
# div = alpha * d_2 + (1 - alpha) * (xi * d_1 + z)
# Xnorm = fx * x / div + cx
# Ynorm = fy * y / div + cy
# coords = torch.stack([Xnorm, Ynorm], dim=1)
# w1 = torch.where(alpha <= 0.5, alpha / (1 - alpha), (1 - alpha) / alpha)
# w2 = w1 + xi / ((2 * w1 * xi + xi ** 2 + 1) ** 0.5)
# valid_mask = z > - w2 * d_1
# # Return pixel coordinates
# return coords, valid_mask.unsqueeze(1).repeat(1, 2, 1, 1)
@torch.autocast(device_type="cuda", enabled=False, dtype=torch.float32)
def unproject(uv, fx, fy, cx, cy, alpha=None, beta=None):
uv = uv.float()
fx = fx.float()
fy = fy.float()
cx = cx.float()
cy = cy.float()
u, v = uv.unbind(dim=1)
alpha = torch.zeros_like(fx) if alpha is None else alpha.float()
beta = torch.ones_like(fx) if beta is None else beta.float()
mx = (u - cx) / fx
my = (v - cy) / fy
r_square = mx**2 + my**2
valid_mask = r_square < torch.where(alpha < 0.5, 1e6, 1 / (beta * (2 * alpha - 1)))
sqrt_val = 1 - (2 * alpha - 1) * beta * r_square
mz = (1 - beta * (alpha**2) * r_square) / (
alpha * torch.sqrt(sqrt_val.clip(min=1e-5)) + (1 - alpha)
)
coeff = 1 / torch.sqrt(mx**2 + my**2 + mz**2 + 1e-5)
x = coeff * mx
y = coeff * my
z = coeff * mz
valid_mask = valid_mask & (z > 1e-3)
xnorm = torch.stack((x, y, z.clamp(1e-3)), dim=1)
return xnorm, valid_mask.unsqueeze(1)
@torch.autocast(device_type="cuda", enabled=False, dtype=torch.float32)
def project(point3D, fx, fy, cx, cy, alpha=None, beta=None):
H, W = point3D.shape[-2:]
alpha = torch.zeros_like(fx) if alpha is None else alpha
beta = torch.ones_like(fx) if beta is None else beta
x, y, z = point3D.unbind(dim=1)
d = torch.sqrt(beta * (x**2 + y**2) + z**2)
x = x / (alpha * d + (1 - alpha) * z).clip(min=1e-3)
y = y / (alpha * d + (1 - alpha) * z).clip(min=1e-3)
Xnorm = fx * x + cx
Ynorm = fy * y + cy
coords = torch.stack([Xnorm, Ynorm], dim=1)
invalid = (
(coords[:, 0] < 0)
| (coords[:, 0] > W)
| (coords[:, 1] < 0)
| (coords[:, 1] > H)
| (z < 0)
)
# Return pixel coordinates
return coords, (~invalid).unsqueeze(1)
def rays2angles(rays: torch.Tensor) -> torch.Tensor:
theta = torch.atan2(rays[..., 0], rays[..., -1])
phi = torch.acos(rays[..., 1])
angles = torch.stack([theta, phi], dim=-1)
return angles
@torch.jit.script
def dilate(image, kernel_size: int | tuple[int, int]):
if isinstance(kernel_size, int):
kernel_size = (kernel_size, kernel_size)
device, dtype = image.device, image.dtype
padding = (kernel_size[0] // 2, kernel_size[1] // 2)
kernel = torch.ones((1, 1, *kernel_size), dtype=torch.float32, device=image.device)
dilated_image = F.conv2d(image.float(), kernel, padding=padding, stride=1)
dilated_image = torch.where(
dilated_image > 0,
torch.tensor(1.0, device=device),
torch.tensor(0.0, device=device),
)
return dilated_image.to(dtype)
@torch.jit.script
def erode(image, kernel_size: int | tuple[int, int]):
if isinstance(kernel_size, int):
kernel_size = (kernel_size, kernel_size)
device, dtype = image.device, image.dtype
padding = (kernel_size[0] // 2, kernel_size[1] // 2)
kernel = torch.ones((1, 1, *kernel_size), dtype=torch.float32, device=image.device)
eroded_image = F.conv2d(image.float(), kernel, padding=padding, stride=1)
eroded_image = torch.where(
eroded_image == (kernel_size[0] * kernel_size[1]),
torch.tensor(1.0, device=device),
torch.tensor(0.0, device=device),
)
return eroded_image.to(dtype)
@torch.jit.script
def iou(mask1: torch.Tensor, mask2: torch.Tensor) -> torch.Tensor:
device = mask1.device
# Ensure the masks are binary (0 or 1)
mask1 = mask1.to(torch.bool)
mask2 = mask2.to(torch.bool)
# Compute intersection and union
intersection = torch.sum(mask1 & mask2).to(torch.float32)
union = torch.sum(mask1 | mask2).to(torch.float32)
# Compute IoU
iou = intersection / union.clip(min=1.0)
return iou
if __name__ == "__main__":
kernel_size = 3
image = torch.tensor(
[
[
[
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
]
]
],
dtype=torch.bool,
)
print("testing dilate and erode, with image:\n", image, image.shape)
# Perform dilation
dilated_image = dilate(image, kernel_size)
print("Dilated Image:\n", dilated_image)
# Perform erosion
eroded_image = erode(image, kernel_size)
print("Eroded Image:\n", eroded_image)
|