File size: 20,325 Bytes
1ea89dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
from functools import wraps
from time import time

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, reduce, repeat
from scipy import interpolate


@torch.jit.script
def max_stack(tensors: list[torch.Tensor]) -> torch.Tensor:
    if len(tensors) == 1:
        return tensors[0]
    return torch.stack(tensors, dim=-1).max(dim=-1).values


def last_stack(tensors: list[torch.Tensor]) -> torch.Tensor:
    return tensors[-1]


def first_stack(tensors: list[torch.Tensor]) -> torch.Tensor:
    return tensors[0]


@torch.jit.script
def softmax_stack(
    tensors: list[torch.Tensor], temperature: float = 1.0
) -> torch.Tensor:
    if len(tensors) == 1:
        return tensors[0]
    return F.softmax(torch.stack(tensors, dim=-1) / temperature, dim=-1).sum(dim=-1)


@torch.jit.script
def mean_stack(tensors: list[torch.Tensor]) -> torch.Tensor:
    if len(tensors) == 1:
        return tensors[0]
    return torch.stack(tensors, dim=-1).mean(dim=-1)


@torch.jit.script
def sum_stack(tensors: list[torch.Tensor]) -> torch.Tensor:
    if len(tensors) == 1:
        return tensors[0]
    return torch.stack(tensors, dim=-1).sum(dim=-1)


def convert_module_to_f16(l):
    """
    Convert primitive modules to float16.
    """
    if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
        l.weight.data = l.weight.data.half()
        if l.bias is not None:
            l.bias.data = l.bias.data.half()


def convert_module_to_f32(l):
    """
    Convert primitive modules to float32, undoing convert_module_to_f16().
    """
    if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
        l.weight.data = l.weight.data.float()
        if l.bias is not None:
            l.bias.data = l.bias.data.float()


def format_seconds(seconds):
    minutes, seconds = divmod(seconds, 60)
    hours, minutes = divmod(minutes, 60)
    return f"{hours:d}:{minutes:02d}:{seconds:02d}"


def get_params(module, lr, wd):
    skip_list = {}
    skip_keywords = {}
    if hasattr(module, "no_weight_decay"):
        skip_list = module.no_weight_decay()
    if hasattr(module, "no_weight_decay_keywords"):
        skip_keywords = module.no_weight_decay_keywords()
    has_decay = []
    no_decay = []
    for name, param in module.named_parameters():
        if not param.requires_grad:
            continue  # frozen weights
        if (
            (name in skip_list)
            or any((kw in name for kw in skip_keywords))
            or len(param.shape) == 1
            or name.endswith(".gamma")
            or name.endswith(".beta")
            or name.endswith(".bias")
        ):
            no_decay.append(param)
        else:
            has_decay.append(param)

    group1 = {
        "params": has_decay,
        "weight_decay": wd,
        "lr": lr,
        "weight_decay_init": wd,
        "weight_decay_base": wd,
        "lr_base": lr,
    }
    group2 = {
        "params": no_decay,
        "weight_decay": 0.0,
        "lr": lr,
        "weight_decay_init": 0.0,
        "weight_decay_base": 0.0,
        "weight_decay_final": 0.0,
        "lr_base": lr,
    }
    return [group1, group2], [lr, lr]


def get_num_layer_for_swin(var_name, num_max_layer, layers_per_stage):
    if var_name in ("cls_token", "mask_token", "pos_embed", "absolute_pos_embed"):
        return 0
    elif var_name.startswith("patch_embed"):
        return 0
    elif var_name.startswith("layers"):
        if var_name.split(".")[2] == "blocks":
            stage_id = int(var_name.split(".")[1])
            layer_id = int(var_name.split(".")[3]) + sum(layers_per_stage[:stage_id])
            return layer_id + 1
        elif var_name.split(".")[2] == "downsample":
            stage_id = int(var_name.split(".")[1])
            layer_id = sum(layers_per_stage[: stage_id + 1])
            return layer_id
    else:
        return num_max_layer - 1


def get_params_layerdecayswin(module, lr, wd, ld):
    skip_list = {}
    skip_keywords = {}
    if hasattr(module, "no_weight_decay"):
        skip_list = module.no_weight_decay()
    if hasattr(module, "no_weight_decay_keywords"):
        skip_keywords = module.no_weight_decay_keywords()
    layers_per_stage = module.depths
    num_layers = sum(layers_per_stage) + 1
    lrs = []
    params = []
    for name, param in module.named_parameters():
        if not param.requires_grad:
            print(f"{name} frozen")
            continue  # frozen weights
        layer_id = get_num_layer_for_swin(name, num_layers, layers_per_stage)
        lr_cur = lr * ld ** (num_layers - layer_id - 1)
        # if (name in skip_list) or any((kw in name for kw in skip_keywords)) or len(param.shape) == 1 or name.endswith(".bias"):
        if (name in skip_list) or any((kw in name for kw in skip_keywords)):
            wd_cur = 0.0
        else:
            wd_cur = wd
        params.append({"params": param, "weight_decay": wd_cur, "lr": lr_cur})
        lrs.append(lr_cur)
    return params, lrs


def log(t, eps: float = 1e-5):
    return torch.log(t.clamp(min=eps))


def l2norm(t):
    return F.normalize(t, dim=-1)


def exists(val):
    return val is not None


def identity(t, *args, **kwargs):
    return t


def divisible_by(numer, denom):
    return (numer % denom) == 0


def first(arr, d=None):
    if len(arr) == 0:
        return d
    return arr[0]


def default(val, d):
    if exists(val):
        return val
    return d() if callable(d) else d


def maybe(fn):
    @wraps(fn)
    def inner(x):
        if not exists(x):
            return x
        return fn(x)

    return inner


def once(fn):
    called = False

    @wraps(fn)
    def inner(x):
        nonlocal called
        if called:
            return
        called = True
        return fn(x)

    return inner


def _many(fn):
    @wraps(fn)
    def inner(tensors, pattern, **kwargs):
        return (fn(tensor, pattern, **kwargs) for tensor in tensors)

    return inner


rearrange_many = _many(rearrange)
repeat_many = _many(repeat)
reduce_many = _many(reduce)


def load_pretrained(state_dict, checkpoint):
    checkpoint_model = checkpoint["model"]
    if any([True if "encoder." in k else False for k in checkpoint_model.keys()]):
        checkpoint_model = {
            k.replace("encoder.", ""): v
            for k, v in checkpoint_model.items()
            if k.startswith("encoder.")
        }
        print("Detect pre-trained model, remove [encoder.] prefix.")
    else:
        print("Detect non-pre-trained model, pass without doing anything.")
    print(f">>>>>>>>>> Remapping pre-trained keys for SWIN ..........")
    checkpoint = load_checkpoint_swin(state_dict, checkpoint_model)


def load_checkpoint_swin(model, checkpoint_model):
    state_dict = model.state_dict()
    # Geometric interpolation when pre-trained patch size mismatch with fine-tuned patch size
    all_keys = list(checkpoint_model.keys())
    for key in all_keys:
        if "relative_position_bias_table" in key:
            relative_position_bias_table_pretrained = checkpoint_model[key]
            relative_position_bias_table_current = state_dict[key]
            L1, nH1 = relative_position_bias_table_pretrained.size()
            L2, nH2 = relative_position_bias_table_current.size()
            if nH1 != nH2:
                print(f"Error in loading {key}, passing......")
            else:
                if L1 != L2:
                    print(f"{key}: Interpolate relative_position_bias_table using geo.")
                    src_size = int(L1**0.5)
                    dst_size = int(L2**0.5)

                    def geometric_progression(a, r, n):
                        return a * (1.0 - r**n) / (1.0 - r)

                    left, right = 1.01, 1.5
                    while right - left > 1e-6:
                        q = (left + right) / 2.0
                        gp = geometric_progression(1, q, src_size // 2)
                        if gp > dst_size // 2:
                            right = q
                        else:
                            left = q

                    # if q > 1.090307:
                    #     q = 1.090307

                    dis = []
                    cur = 1
                    for i in range(src_size // 2):
                        dis.append(cur)
                        cur += q ** (i + 1)

                    r_ids = [-_ for _ in reversed(dis)]

                    x = r_ids + [0] + dis
                    y = r_ids + [0] + dis

                    t = dst_size // 2.0
                    dx = np.arange(-t, t + 0.1, 1.0)
                    dy = np.arange(-t, t + 0.1, 1.0)

                    print("Original positions = %s" % str(x))
                    print("Target positions = %s" % str(dx))

                    all_rel_pos_bias = []

                    for i in range(nH1):
                        z = (
                            relative_position_bias_table_pretrained[:, i]
                            .view(src_size, src_size)
                            .float()
                            .numpy()
                        )
                        f_cubic = interpolate.interp2d(x, y, z, kind="cubic")
                        all_rel_pos_bias.append(
                            torch.Tensor(f_cubic(dx, dy))
                            .contiguous()
                            .view(-1, 1)
                            .to(relative_position_bias_table_pretrained.device)
                        )

                    new_rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1)
                    checkpoint_model[key] = new_rel_pos_bias

    # delete relative_position_index since we always re-init it
    relative_position_index_keys = [
        k for k in checkpoint_model.keys() if "relative_position_index" in k
    ]
    for k in relative_position_index_keys:
        del checkpoint_model[k]

    # delete relative_coords_table since we always re-init it
    relative_coords_table_keys = [
        k for k in checkpoint_model.keys() if "relative_coords_table" in k
    ]
    for k in relative_coords_table_keys:
        del checkpoint_model[k]

    # # re-map keys due to name change
    rpe_mlp_keys = [k for k in checkpoint_model.keys() if "cpb_mlp" in k]
    for k in rpe_mlp_keys:
        checkpoint_model[k.replace("cpb_mlp", "rpe_mlp")] = checkpoint_model.pop(k)

    # delete attn_mask since we always re-init it
    attn_mask_keys = [k for k in checkpoint_model.keys() if "attn_mask" in k]
    for k in attn_mask_keys:
        del checkpoint_model[k]

    encoder_keys = [k for k in checkpoint_model.keys() if k.startswith("encoder.")]
    for k in encoder_keys:
        checkpoint_model[k.replace("encoder.", "")] = checkpoint_model.pop(k)

    return checkpoint_model


def add_padding_metas(out, image_metas):
    device = out.device
    # left, right, top, bottom
    paddings = [img_meta.get("paddings", [0] * 4) for img_meta in image_metas]
    paddings = torch.stack(paddings).to(device)
    outs = [F.pad(o, padding, value=0.0) for padding, o in zip(paddings, out)]
    return torch.stack(outs)


# left, right, top, bottom
def remove_padding(out, paddings):
    H, W = out.shape[-2:]
    outs = [
        o[..., padding[2] : H - padding[3], padding[0] : W - padding[1]]
        for padding, o in zip(paddings, out)
    ]
    return torch.stack(outs)


def remove_padding_metas(out, image_metas):
    B, C, H, W = out.shape
    device = out.device
    # left, right, top, bottom
    paddings = [
        torch.tensor(img_meta.get("paddings", [0] * 4)) for img_meta in image_metas
    ]
    return remove_padding(out, paddings)


def ssi_helper(tensor1, tensor2):
    stability_mat = 1e-4 * torch.eye(2, device=tensor1.device)
    tensor2_one = torch.stack([tensor2, torch.ones_like(tensor2)], dim=1)
    scale_shift = torch.inverse(tensor2_one.T @ tensor2_one + stability_mat) @ (
        tensor2_one.T @ tensor1.unsqueeze(1)
    )
    scale, shift = scale_shift.squeeze().chunk(2, dim=0)
    return scale, shift


def calculate_mean_values(names, values):
    # Create a defaultdict to store sum and count for each name
    name_values = {name: {} for name in names}

    # Iterate through the lists and accumulate values for each name
    for name, value in zip(names, values):
        name_values[name]["sum"] = name_values[name].get("sum", 0.0) + value
        name_values[name]["count"] = name_values[name].get("count", 0.0) + 1

    # Calculate mean values and create the output dictionary
    output_dict = {
        name: name_values[name]["sum"] / name_values[name]["count"]
        for name in name_values
    }

    return output_dict


def remove_leading_dim(infos):
    if isinstance(infos, dict):
        return {k: remove_leading_dim(v) for k, v in infos.items()}
    elif isinstance(infos, torch.Tensor):
        return infos.squeeze(0)
    else:
        return infos


def recursive_index(infos, index):
    if isinstance(infos, dict):
        return {k: recursive_index(v, index) for k, v in infos.items()}
    elif isinstance(infos, torch.Tensor):
        return infos[index]
    else:
        return infos


def to_cpu(infos):
    if isinstance(infos, dict):
        return {k: to_cpu(v) for k, v in infos.items()}
    elif isinstance(infos, torch.Tensor):
        return infos.detach()
    else:
        return infos


def masked_mean(
    data: torch.Tensor,
    mask: torch.Tensor | None = None,
    dim: list[int] | None = None,
    keepdim: bool = False,
) -> torch.Tensor:
    dim = dim if dim is not None else list(range(data.dim()))
    if mask is None:
        return data.mean(dim=dim, keepdim=keepdim)
    mask = mask.float()
    mask_sum = torch.sum(mask, dim=dim, keepdim=True)
    mask_mean = torch.sum(data * mask, dim=dim, keepdim=True) / torch.clamp(
        mask_sum, min=1.0
    )
    return mask_mean.squeeze(dim) if not keepdim else mask_mean


class ProfileMethod:
    def __init__(self, model, func_name, track_statistics=True, verbose=False):
        self.model = model
        self.func_name = func_name
        self.verbose = verbose
        self.track_statistics = track_statistics
        self.timings = []

    def __enter__(self):
        # Start timing
        if self.verbose:
            if torch.cuda.is_available():
                torch.cuda.synchronize()
            self.start_time = time()
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        if self.verbose:
            if torch.cuda.is_available():
                torch.cuda.synchronize()

            self.end_time = time()

            elapsed_time = self.end_time - self.start_time

            self.timings.append(elapsed_time)
            if self.track_statistics and len(self.timings) > 25:

                # Compute statistics if tracking
                timings_array = np.array(self.timings)
                mean_time = np.mean(timings_array)
                std_time = np.std(timings_array)
                quantiles = np.percentile(timings_array, [0, 25, 50, 75, 100])
                print(
                    f"{self.model.__class__.__name__}.{self.func_name} took {elapsed_time:.4f} seconds"
                )
                print(f"Mean Time: {mean_time:.4f} seconds")
                print(f"Std Time: {std_time:.4f} seconds")
                print(
                    f"Quantiles: Min={quantiles[0]:.4f}, 25%={quantiles[1]:.4f}, Median={quantiles[2]:.4f}, 75%={quantiles[3]:.4f}, Max={quantiles[4]:.4f}"
                )

            else:
                print(
                    f"{self.model.__class__.__name__}.{self.func_name} took {elapsed_time:.4f} seconds"
                )


def profile_method(track_statistics=True, verbose=False):
    def decorator(func):
        @wraps(func)
        def wrapper(self, *args, **kwargs):
            with ProfileMethod(self, func.__name__, track_statistics, verbose):
                return func(self, *args, **kwargs)

        return wrapper

    return decorator


class ProfileFunction:
    def __init__(self, func_name, track_statistics=True, verbose=False):
        self.func_name = func_name
        self.verbose = verbose
        self.track_statistics = track_statistics
        self.timings = []

    def __enter__(self):
        # Start timing
        if self.verbose:
            if torch.cuda.is_available():
                torch.cuda.synchronize()
            self.start_time = time()
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        if self.verbose:
            if torch.cuda.is_available():
                torch.cuda.synchronize()

            self.end_time = time()

            elapsed_time = self.end_time - self.start_time

            self.timings.append(elapsed_time)
            if self.track_statistics and len(self.timings) > 25:

                # Compute statistics if tracking
                timings_array = np.array(self.timings)
                mean_time = np.mean(timings_array)
                std_time = np.std(timings_array)
                quantiles = np.percentile(timings_array, [0, 25, 50, 75, 100])
                print(f"{self.func_name} took {elapsed_time:.4f} seconds")
                print(f"Mean Time: {mean_time:.4f} seconds")
                print(f"Std Time: {std_time:.4f} seconds")
                print(
                    f"Quantiles: Min={quantiles[0]:.4f}, 25%={quantiles[1]:.4f}, Median={quantiles[2]:.4f}, 75%={quantiles[3]:.4f}, Max={quantiles[4]:.4f}"
                )

            else:
                print(f"{self.func_name} took {elapsed_time:.4f} seconds")


def profile_function(track_statistics=True, verbose=False):
    def decorator(func):
        @wraps(func)
        def wrapper(self, *args, **kwargs):
            with ProfileFunction(func.__name__, track_statistics, verbose):
                return func(self, *args, **kwargs)

        return wrapper

    return decorator


def recursive_apply(inputs, func):
    if isinstance(inputs, list):
        return [recursive_apply(camera, func) for camera in inputs]
    else:
        return func(inputs)


def squeeze_list(nested_list, dim, current_dim=0):
    # If the current dimension is in the list of indices to squeeze
    if isinstance(nested_list, list) and len(nested_list) == 1 and current_dim == dim:
        return squeeze_list(nested_list[0], dim, current_dim + 1)
    elif isinstance(nested_list, list):
        return [squeeze_list(item, dim, current_dim + 1) for item in nested_list]
    else:
        return nested_list


def match_gt(tensor1, tensor2, padding1, padding2, mode: str = "bilinear"):
    """
    Transform each item in tensor1 batch to match tensor2's dimensions and padding.

    Args:
        tensor1 (torch.Tensor): The input tensor to transform, with shape (batch_size, channels, height, width).
        tensor2 (torch.Tensor): The target tensor to match, with shape (batch_size, channels, height, width).
        padding1 (tuple): Padding applied to tensor1 (pad_left, pad_right, pad_top, pad_bottom).
        padding2 (tuple): Desired padding to be applied to match tensor2 (pad_left, pad_right, pad_top, pad_bottom).

    Returns:
        torch.Tensor: The batch of transformed tensors matching tensor2's size and padding.
    """
    # Get batch size
    batch_size = len(tensor1)
    src_dtype = tensor1[0].dtype
    tgt_dtype = tensor2[0].dtype

    # List to store transformed tensors
    transformed_tensors = []

    for i in range(batch_size):
        item1 = tensor1[i]
        item2 = tensor2[i]

        h1, w1 = item1.shape[1], item1.shape[2]
        pad1_l, pad1_r, pad1_t, pad1_b = (
            padding1[i] if padding1 is not None else (0, 0, 0, 0)
        )
        pad2_l, pad2_r, pad2_t, pad2_b = (
            padding2[i] if padding2 is not None else (0, 0, 0, 0)
        )
        item1_unpadded = item1[:, pad1_t : h1 - pad1_b, pad1_l : w1 - pad1_r]

        h2, w2 = (
            item2.shape[1] - pad2_t - pad2_b,
            item2.shape[2] - pad2_l - pad2_r,
        )

        item1_resized = F.interpolate(
            item1_unpadded.unsqueeze(0).to(tgt_dtype), size=(h2, w2), mode=mode
        )
        item1_padded = F.pad(item1_resized, (pad2_l, pad2_r, pad2_t, pad2_b))
        transformed_tensors.append(item1_padded)

    transformed_batch = torch.cat(transformed_tensors)
    return transformed_batch.to(src_dtype)