Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,672 Bytes
1ea89dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import torch
from torch.nn import functional as F
def quaternion_to_R(quaternions):
"""
Convert rotations given as quaternions to rotation matrices.
Args:
quaternions: quaternions with real part first,
as tensor of shape (..., 4).
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
r, i, j, k = torch.unbind(quaternions, -1)
two_s = 2.0 / (quaternions * quaternions).sum(-1)
o = torch.stack(
(
1 - two_s * (j * j + k * k),
two_s * (i * j - k * r),
two_s * (i * k + j * r),
two_s * (i * j + k * r),
1 - two_s * (i * i + k * k),
two_s * (j * k - i * r),
two_s * (i * k - j * r),
two_s * (j * k + i * r),
1 - two_s * (i * i + j * j),
),
-1,
)
return o.reshape(quaternions.shape[:-1] + (3, 3))
def standardize_quaternion(quaternions: torch.Tensor) -> torch.Tensor:
"""
Convert a unit quaternion to a standard form: one in which the real
part is non negative.
Args:
quaternions: Quaternions with real part first,
as tensor of shape (..., 4).
Returns:
Standardized quaternions as tensor of shape (..., 4).
"""
return torch.where(quaternions[..., 0:1] < 0, -quaternions, quaternions)
def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor:
"""
Returns torch.sqrt(torch.max(0, x))
but with a zero subgradient where x is 0.
"""
ret = torch.zeros_like(x)
positive_mask = x > 0
ret[positive_mask] = torch.sqrt(x[positive_mask])
return ret
def R_to_quaternion(matrix: torch.Tensor) -> torch.Tensor:
"""
Convert rotations given as rotation matrices to quaternions.
Args:
matrix: Rotation matrices as tensor of shape (..., 3, 3).
Returns:
quaternions with real part first, as tensor of shape (..., 4).
"""
if matrix.size(-1) != 3 or matrix.size(-2) != 3:
raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.")
batch_dim = matrix.shape[:-2]
m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind(
matrix.reshape(batch_dim + (9,)), dim=-1
)
q_abs = _sqrt_positive_part(
torch.stack(
[
1.0 + m00 + m11 + m22,
1.0 + m00 - m11 - m22,
1.0 - m00 + m11 - m22,
1.0 - m00 - m11 + m22,
],
dim=-1,
)
)
# we produce the desired quaternion multiplied by each of r, i, j, k
quat_by_rijk = torch.stack(
[
torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1),
torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1),
torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1),
torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1),
],
dim=-2,
)
# We floor here at 0.1 but the exact level is not important; if q_abs is small,
# the candidate won't be picked.
flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device)
quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr))
# if not for numerical problems, quat_candidates[i] should be same (up to a sign),
# forall i; we pick the best-conditioned one (with the largest denominator)
out = quat_candidates[
F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, :
].reshape(batch_dim + (4,))
out = standardize_quaternion(out)
return out
def Rt_to_pose(R, t):
assert R.shape[-2:] == (3, 3), "The last two dimensions of R must be 3x3"
assert t.shape[-2:] == (3, 1), "The last dimension of t must be 3"
# Create the pose matrix
pose = torch.cat([R, t], dim=-1)
pose = F.pad(pose, (0, 0, 0, 1), value=0)
pose[..., 3, 3] = 1
return pose
def pose_to_Rt(pose):
assert pose.shape[-2:] == (4, 4), "The last two dimensions of pose must be 4x4"
# Extract the rotation matrix and translation vector
R = pose[..., :3, :3]
t = pose[..., :3, 3:]
return R, t
def relative_pose(pose1, pose2):
# Compute world_to_cam for pose1
pose1_inv = invert_pose(pose1)
# Relative pose as cam_to_world_2 -> world_to_cam_1 => cam2_to_cam1
relative_pose = pose1_inv @ pose2
return relative_pose
@torch.autocast(device_type="cuda", dtype=torch.float32)
def invert_pose(pose):
R, t = pose_to_Rt(pose)
R_inv = R.transpose(-2, -1)
t_inv = -torch.matmul(R_inv, t)
pose_inv = Rt_to_pose(R_inv, t_inv)
return pose_inv
def apply_pose_transformation(point_cloud, pose):
reshape = point_cloud.ndim > 3
shapes = point_cloud.shape
# Extract rotation and translation from pose
R, t = pose_to_Rt(pose)
# Apply the pose transformation
if reshape:
point_cloud = point_cloud.reshape(shapes[0], -1, shapes[-1])
transformed_points = torch.matmul(point_cloud, R.transpose(-2, -1)) + t.transpose(
-2, -1
)
if reshape:
transformed_points = transformed_points.reshape(shapes)
return transformed_points
def euler2mat(roll, pitch, yaw) -> torch.Tensor:
"""
Convert Euler angles (roll, pitch, yaw) to a 3x3 rotation matrix.
Args:
euler_angles (torch.Tensor): Tensor of shape (N, 3) representing roll, pitch, yaw in radians.
- roll: rotation around z-axis
- pitch: rotation around x-axis
- yaw: rotation around y-axis
Returns:
torch.Tensor: Tensor of shape (N, 3, 3) representing the rotation matrices.
"""
cos_r, sin_r = torch.cos(roll), torch.sin(roll) # Roll
cos_p, sin_p = torch.cos(pitch), torch.sin(pitch) # Pitch
cos_y, sin_y = torch.cos(yaw), torch.sin(yaw) # Yaw
# Rotation matrices
R_z = torch.zeros((roll.shape[0], 3, 3), device=roll.device)
R_y = torch.zeros_like(R_z)
R_x = torch.zeros_like(R_z)
# Z-axis (roll)
R_z[:, 0, 0], R_z[:, 0, 1], R_z[:, 1, 0], R_z[:, 1, 1], R_z[:, 2, 2] = (
cos_y,
-sin_y,
sin_y,
cos_y,
1.0,
)
# Y-axis (yaw)
R_y[:, 0, 0], R_y[:, 0, 2], R_y[:, 2, 0], R_y[:, 2, 2], R_y[:, 1, 1] = (
cos_p,
sin_p,
-sin_p,
cos_p,
1.0,
)
# X-axis (pitch)
R_x[:, 1, 1], R_x[:, 1, 2], R_x[:, 2, 1], R_x[:, 2, 2], R_x[:, 0, 0] = (
cos_r,
-sin_r,
sin_r,
cos_r,
1.0,
)
# Combine rotations: R = R_z * R_y * R_x
rotation_matrix = torch.matmul(torch.matmul(R_z, R_y), R_x)
return rotation_matrix
|