Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,918 Bytes
1ea89dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import os
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn.functional as F
import wandb
from PIL import Image
from unik3d.utils.distributed import get_rank
from unik3d.utils.misc import ssi_helper
def colorize(
value: np.ndarray, vmin: float = None, vmax: float = None, cmap: str = "magma_r"
):
# if already RGB, do nothing
if value.ndim > 2:
if value.shape[-1] > 1:
return value
value = value[..., 0]
invalid_mask = value < 0.0001
# normalize
vmin = value.min() if vmin is None else vmin
vmax = value.max() if vmax is None else vmax
value = (value - vmin) / (vmax - vmin) # vmin..vmax
# set color
cmapper = plt.get_cmap(cmap)
value = cmapper(value, bytes=True) # (nxmx4)
value[invalid_mask] = 0
img = value[..., :3]
return img
def image_grid(imgs: list[np.ndarray], rows: int, cols: int) -> np.ndarray:
if not len(imgs):
return None
assert len(imgs) == rows * cols
h, w = imgs[0].shape[:2]
grid = Image.new("RGB", size=(cols * w, rows * h))
for i, img in enumerate(imgs):
grid.paste(
Image.fromarray(img.astype(np.uint8)).resize(
(w, h), resample=Image.BILINEAR
),
box=(i % cols * w, i // cols * h),
)
return np.array(grid)
def get_pointcloud_from_rgbd(
image: np.array,
depth: np.array,
mask: np.ndarray,
intrinsic_matrix: np.array,
extrinsic_matrix: np.array = None,
):
depth = np.array(depth).squeeze()
mask = np.array(mask).squeeze()
# Mask the depth array
masked_depth = np.ma.masked_where(mask == False, depth)
# masked_depth = np.ma.masked_greater(masked_depth, 8000)
# Create idx array
idxs = np.indices(masked_depth.shape)
u_idxs = idxs[1]
v_idxs = idxs[0]
# Get only non-masked depth and idxs
z = masked_depth[~masked_depth.mask]
compressed_u_idxs = u_idxs[~masked_depth.mask]
compressed_v_idxs = v_idxs[~masked_depth.mask]
image = np.stack(
[image[..., i][~masked_depth.mask] for i in range(image.shape[-1])], axis=-1
)
# Calculate local position of each point
# Apply vectorized math to depth using compressed arrays
cx = intrinsic_matrix[0, 2]
fx = intrinsic_matrix[0, 0]
x = (compressed_u_idxs - cx) * z / fx
cy = intrinsic_matrix[1, 2]
fy = intrinsic_matrix[1, 1]
# Flip y as we want +y pointing up not down
y = -((compressed_v_idxs - cy) * z / fy)
# # Apply camera_matrix to pointcloud as to get the pointcloud in world coords
# if extrinsic_matrix is not None:
# # Calculate camera pose from extrinsic matrix
# camera_matrix = np.linalg.inv(extrinsic_matrix)
# # Create homogenous array of vectors by adding 4th entry of 1
# # At the same time flip z as for eye space the camera is looking down the -z axis
# w = np.ones(z.shape)
# x_y_z_eye_hom = np.vstack((x, y, -z, w))
# # Transform the points from eye space to world space
# x_y_z_world = np.dot(camera_matrix, x_y_z_eye_hom)[:3]
# return x_y_z_world.T
# else:
x_y_z_local = np.stack((x, y, z), axis=-1)
return np.concatenate([x_y_z_local, image], axis=-1)
def save_file_ply(xyz, rgb, pc_file):
if rgb.max() < 1.001:
rgb = rgb * 255.0
rgb = rgb.astype(np.uint8)
# print(rgb)
with open(pc_file, "w") as f:
# headers
f.writelines(
[
"ply\n" "format ascii 1.0\n",
"element vertex {}\n".format(xyz.shape[0]),
"property float x\n",
"property float y\n",
"property float z\n",
"property uchar red\n",
"property uchar green\n",
"property uchar blue\n",
"end_header\n",
]
)
for i in range(xyz.shape[0]):
str_v = "{:10.6f} {:10.6f} {:10.6f} {:d} {:d} {:d}\n".format(
xyz[i, 0], xyz[i, 1], xyz[i, 2], rgb[i, 0], rgb[i, 1], rgb[i, 2]
)
f.write(str_v)
# really awful fct... FIXME
def train_artifacts(rgbs, gts, preds, infos={}):
# interpolate to same shape, will be distorted! FIXME TODO
shape = rgbs[0].shape[-2:]
gts = F.interpolate(gts, shape, mode="nearest-exact")
rgbs = [
(127.5 * (rgb + 1))
.clip(0, 255)
.to(torch.uint8)
.cpu()
.detach()
.permute(1, 2, 0)
.numpy()
for rgb in rgbs
]
new_gts, new_preds = [], []
num_additional, additionals = 0, []
if len(gts) > 0:
for i, gt in enumerate(gts):
# scale, shift = ssi_helper(gts[i][gts[i]>0].cpu().detach(), preds[i][gts[i]>0].cpu().detach())
scale, shift = 1, 0
up = torch.quantile(
torch.log(1 + gts[i][gts[i] > 0]).float().cpu().detach(), 0.98
).item()
down = torch.quantile(
torch.log(1 + gts[i][gts[i] > 0]).float().cpu().detach(), 0.02
).item()
gt = gts[i].cpu().detach().squeeze().numpy()
pred = (preds[i].cpu().detach() * scale + shift).squeeze().numpy()
new_gts.append(
colorize(np.log(1.0 + gt), vmin=down, vmax=up)
) # , vmin=vmin, vmax=vmax))
new_preds.append(
colorize(np.log(1.0 + pred), vmin=down, vmax=up)
) # , vmin=vmin, vmax=vmax))
gts, preds = new_gts, new_preds
else:
preds = [
colorize(pred.cpu().detach().squeeze().numpy(), 0.0, 80.0)
for i, pred in enumerate(preds)
]
for name, info in infos.items():
num_additional += 1
if info.shape[1] == 3:
additionals.extend(
[
(127.5 * (x + 1))
.clip(0, 255)
.to(torch.uint8)
.cpu()
.detach()
.permute(1, 2, 0)
.numpy()
for x in info
]
)
else: # must be depth!
additionals.extend(
[
colorize(x.cpu().detach().squeeze().numpy())
for i, x in enumerate(info)
]
)
num_rows = 2 + int(len(gts) > 0) + num_additional
artifacts_grid = image_grid(
[*rgbs, *gts, *preds, *additionals], num_rows, len(rgbs)
)
return artifacts_grid
def log_train_artifacts(rgbs, gts, preds, step, infos={}):
artifacts_grid = train_artifacts(rgbs, gts, preds, infos)
try:
wandb.log({f"training": [wandb.Image(artifacts_grid)]}, step=step)
except:
Image.fromarray(artifacts_grid).save(
os.path.join(
os.environ.get("TMPDIR", "/tmp"),
f"{get_rank()}_art_grid{step}.png",
)
)
print("Logging training images failed")
def plot_quiver(flow, spacing, margin=0, **kwargs):
"""Plots less dense quiver field.
Args:
ax: Matplotlib axis
flow: motion vectors
spacing: space (px) between each arrow in grid
margin: width (px) of enclosing region without arrows
kwargs: quiver kwargs (default: angles="xy", scale_units="xy")
"""
h, w, *_ = flow.shape
nx = int((w - 2 * margin) / spacing)
ny = int((h - 2 * margin) / spacing)
x = np.linspace(margin, w - margin - 1, nx, dtype=np.int64)
y = np.linspace(margin, h - margin - 1, ny, dtype=np.int64)
flow = flow[np.ix_(y, x)]
u = flow[:, :, 0]
v = flow[:, :, 1]
kwargs = {**dict(angles="xy", scale_units="xy"), **kwargs}
fig, ax = plt.subplots(figsize=(10, 10))
ax.quiver(x, y, u, v, **kwargs)
# ax.set_ylim(sorted(ax.get_ylim(), reverse=True))
return fig, ax
|