Luigi Piccinelli
init demo
1ea89dd
from typing import Any
import torch
from unik3d.datasets.sequence_dataset import SequenceDataset
class ASE(SequenceDataset):
min_depth = 0.01
max_depth = 20.0
depth_scale = 1000.0
test_split = "val.txt"
train_split = "train.txt"
sequences_file = "sequences.json"
hdf5_paths = [f"ASE.hdf5"]
def __init__(
self,
image_shape: tuple[int, int],
split_file: str,
test_mode: bool,
normalize: bool,
augmentations_db: dict[str, Any],
resize_method: str,
mini: float = 1.0,
num_frames: int = 1,
benchmark: bool = False,
decode_fields: list[str] = ["image", "depth"],
inplace_fields: list[str] = ["camera_params", "cam2w"],
**kwargs,
) -> None:
super().__init__(
image_shape=image_shape,
split_file=split_file,
test_mode=test_mode,
benchmark=benchmark,
normalize=normalize,
augmentations_db=augmentations_db,
resize_method=resize_method,
mini=mini,
num_frames=num_frames,
decode_fields=decode_fields,
inplace_fields=inplace_fields,
**kwargs,
)
def preprocess(self, results):
self.resizer.ctx = None
for i, seq in enumerate(results["sequence_fields"]):
# Create a mask where the distance from the center is less than H/2
H, W = results[seq]["image"].shape[-2:]
x = torch.linspace(-W / 2 - 0.5, W / 2 + 0.5, W)
y = torch.linspace(-H / 2 - 0.5, H / 2 + 0.5, H)
xv, yv = torch.meshgrid(x, y, indexing="xy")
distance_from_center = torch.sqrt(xv**2 + yv**2).reshape(1, 1, H, W)
results[seq]["validity_mask"] = distance_from_center < (H / 2) + 20
results[seq]["mask_fields"].add("validity_mask")
return super().preprocess(results)
def pre_pipeline(self, results):
results = super().pre_pipeline(results)
results["dense"] = [True] * self.num_frames * self.num_copies
results["synthetic"] = [True] * self.num_frames * self.num_copies
results["quality"] = [0] * self.num_frames * self.num_copies
return results