Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import h5py | |
import numpy as np | |
import torch | |
from unik3d.datasets.image_dataset import ImageDataset | |
from unik3d.datasets.sequence_dataset import SequenceDataset | |
from unik3d.datasets.utils import DatasetFromList | |
class DiodeIndoor(ImageDataset): | |
CAM_INTRINSIC = { | |
"ALL": torch.tensor([[886.81, 0, 512], [0, 927.06, 384], [0, 0, 1]]) | |
} | |
min_depth = 0.01 | |
max_depth = 25.0 | |
depth_scale = 256.0 | |
test_split = "val.txt" | |
train_split = "train.txt" | |
hdf5_paths = ["DiodeIndoor.hdf5"] | |
def __init__( | |
self, | |
image_shape, | |
split_file, | |
test_mode, | |
crop=None, | |
benchmark=False, | |
augmentations_db={}, | |
normalize=True, | |
mini=1.0, | |
**kwargs, | |
): | |
super().__init__( | |
image_shape=image_shape, | |
split_file=split_file, | |
test_mode=test_mode, | |
benchmark=benchmark, | |
normalize=normalize, | |
augmentations_db=augmentations_db, | |
mini=mini, | |
**kwargs, | |
) | |
self.test_mode = test_mode | |
# load annotations | |
self.load_dataset() | |
def load_dataset(self): | |
h5file = h5py.File( | |
os.path.join(self.data_root, self.hdf5_paths[0]), | |
"r", | |
libver="latest", | |
swmr=True, | |
) | |
txt_file = np.array(h5file[self.split_file]) | |
txt_string = txt_file.tostring().decode("ascii")[:-1] # correct the -1 | |
h5file.close() | |
dataset = [] | |
for line in txt_string.split("\n"): | |
image_filename, depth_filename = line.strip().split(" ") | |
sample = [ | |
image_filename, | |
depth_filename, | |
] | |
dataset.append(sample) | |
if not self.test_mode: | |
dataset = self.chunk(dataset, chunk_dim=1, pct=self.mini) | |
self.dataset = DatasetFromList(dataset) | |
self.log_load_dataset() | |
def get_intrinsics(self, *args, **kwargs): | |
return self.CAM_INTRINSIC["ALL"].clone() | |
def get_mapper(self): | |
return { | |
"image_filename": 0, | |
"depth_filename": 1, | |
} | |
def pre_pipeline(self, results): | |
results = super().pre_pipeline(results) | |
results["dense"] = [True] * self.num_copies | |
results["quality"] = [1] * self.num_copies | |
return results | |
class DiodeIndoor_F(SequenceDataset): | |
min_depth = 0.01 | |
max_depth = 25.0 | |
depth_scale = 1000.0 | |
test_split = "train.txt" | |
train_split = "train.txt" | |
sequences_file = "sequences.json" | |
hdf5_paths = ["DiodeIndoor-F.hdf5"] | |
def __init__( | |
self, | |
image_shape: tuple[int, int], | |
split_file: str, | |
test_mode: bool, | |
normalize: bool, | |
augmentations_db: dict[str, float], | |
resize_method: str, | |
mini: float = 1.0, | |
num_frames: int = 1, | |
benchmark: bool = False, | |
decode_fields: list[str] = ["image", "depth"], | |
inplace_fields: list[str] = ["camera_params", "cam2w"], | |
**kwargs, | |
) -> None: | |
super().__init__( | |
image_shape=image_shape, | |
split_file=split_file, | |
test_mode=test_mode, | |
benchmark=benchmark, | |
normalize=normalize, | |
augmentations_db=augmentations_db, | |
resize_method=resize_method, | |
mini=mini, | |
num_frames=num_frames, | |
decode_fields=( | |
decode_fields if not test_mode else [*decode_fields, "points"] | |
), | |
inplace_fields=inplace_fields, | |
**kwargs, | |
) | |
def pre_pipeline(self, results): | |
results = super().pre_pipeline(results) | |
results["dense"] = [True] * self.num_frames * self.num_copies | |
results["quality"] = [1] * self.num_frames * self.num_copies | |
return results | |
class DiodeOutdoor(ImageDataset): | |
CAM_INTRINSIC = { | |
"ALL": torch.tensor([[886.81, 0, 512], [0, 927.06, 384], [0, 0, 1]]) | |
} | |
min_depth = 0.1 | |
max_depth = 80.0 | |
log_mean = 0 | |
log_std = 1 | |
test_split = "diode_outdoor_val.txt" | |
train_split = "diode_outdoor_train.txt" | |
hdf5_paths = ["diode.hdf5"] | |
def __init__( | |
self, | |
image_shape, | |
split_file, | |
test_mode, | |
depth_scale=256, | |
crop=None, | |
benchmark=False, | |
augmentations_db={}, | |
normalize=True, | |
resize_method="hard", | |
mini=1.0, | |
**kwargs, | |
): | |
super().__init__( | |
image_shape=image_shape, | |
split_file=split_file, | |
test_mode=test_mode, | |
benchmark=benchmark, | |
normalize=normalize, | |
augmentations_db=augmentations_db, | |
resize_method=resize_method, | |
mini=mini, | |
**kwargs, | |
) | |
self.test_mode = test_mode | |
self.depth_scale = depth_scale | |
self.masker = AnnotationMask( | |
min_value=self.min_depth, | |
max_value=self.max_depth if test_mode else None, | |
custom_fn=self.eval_mask if test_mode else lambda x, *args, **kwargs: x, | |
) | |
# load annotations | |
self.load_dataset() | |
def load_dataset(self): | |
self.h5file = h5py.File( | |
os.path.join(self.data_root, self.hdf5_path), | |
"r", | |
libver="latest", | |
swmr=True, | |
) | |
txt_file = np.array(self.h5file[self.split_file]) | |
txt_string = txt_file.tostring().decode("ascii")[:-1] | |
dataset = {"depth_filename": [], "image_filename": []} | |
for line in txt_string.split("\n"): | |
depth_filename = line.strip().split(" ")[1] | |
img_name = line.strip().split(" ")[0] | |
image_filename = img_name | |
dataset["depth_filename"].append(depth_filename) | |
dataset["image_filename"].append(image_filename) | |
self.dataset = pl.from_dict(dataset) | |
if not self.test_mode and self.mini: | |
self.dataset = self.dataset[::2] | |
class Diode(ImageDataset): | |
CAM_INTRINSIC = { | |
"ALL": torch.tensor([[886.81, 0, 512], [0, 927.06, 384], [0, 0, 1]]) | |
} | |
log_mean = 0 | |
log_std = 1 | |
min_depth = 0.6 | |
max_depth = 80.0 | |
test_split = "diode_val.txt" | |
train_split = "diode_train.txt" | |
hdf5_paths = ["diode.hdf5"] | |
def __init__( | |
self, | |
image_shape, | |
split_file, | |
test_mode, | |
depth_scale=256, | |
crop=None, | |
benchmark=False, | |
augmentations_db={}, | |
normalize=True, | |
mini=1.0, | |
**kwargs, | |
): | |
super().__init__( | |
image_shape=image_shape, | |
split_file=split_file, | |
test_mode=test_mode, | |
benchmark=benchmark, | |
normalize=normalize, | |
augmentations_db=augmentations_db, | |
mini=mini, | |
**kwargs, | |
) | |
self.test_mode = test_mode | |
self.depth_scale = depth_scale | |
self.masker = AnnotationMask( | |
min_value=self.min_depth, | |
max_value=self.max_depth if test_mode else None, | |
custom_fn=self.eval_mask if test_mode else lambda x, *args, **kwargs: x, | |
) | |
# load annotations | |
self.load_dataset() | |
def load_dataset(self): | |
self.h5file = h5py.File( | |
os.path.join(self.data_root, self.hdf5_path), | |
"r", | |
libver="latest", | |
swmr=True, | |
) | |
txt_file = np.array(self.h5file[self.split_file]) | |
txt_string = txt_file.tostring().decode("ascii")[:-1] | |
dataset = {"depth_filename": [], "image_filename": []} | |
for line in txt_string.split("\n"): | |
depth_filename = line.strip().split(" ")[1] | |
image_filename = line.strip().split(" ")[0] | |
dataset["depth_filename"].append(depth_filename) | |
dataset["image_filename"].append(image_filename) | |
self.dataset = pl.from_dict(dataset) | |
if not self.test_mode and self.mini: | |
self.dataset = self.dataset[::2] | |
def get_intrinsics(self, *args, **kwargs): | |
return self.CAM_INTRINSIC["ALL"].clone() | |