Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
import torch | |
from torch.utils.data import Dataset | |
class Dummy(Dataset): | |
train_split = None | |
test_split = None | |
def __init__(self, *args, **kwargs): | |
super().__init__() | |
self.dataset = np.arange(1_000_000) | |
def get_single_item(self, idx): | |
# results = {} | |
# results["cam2w"] = torch.eye(4).unsqueeze(0) | |
# results["K"] = torch.eye(3).unsqueeze(0) | |
# results["image"] = torch.zeros(1, 3, 1024, 1024).to(torch.uint8) | |
# results["depth"] = torch.zeros(1, 1, 1024, 1024).to(torch.float32) | |
return { | |
"x": {(0, 0): torch.rand(1, 3, 1024, 1024, dtype=torch.float32)}, | |
"img_metas": {"val": torch.rand(1, 1024, dtype=torch.float32)}, | |
} | |
def __getitem__(self, idx): | |
if isinstance(idx, (list, tuple)): | |
results = [self.get_single_item(i) for i in idx] | |
else: | |
results = self.get_single_item(idx) | |
return results | |
def __len__(self): | |
return len(self.dataset) | |