Luigi Piccinelli
init demo
1ea89dd
import numpy as np
import torch
from torch.utils.data import Dataset
class Dummy(Dataset):
train_split = None
test_split = None
def __init__(self, *args, **kwargs):
super().__init__()
self.dataset = np.arange(1_000_000)
def get_single_item(self, idx):
# results = {}
# results["cam2w"] = torch.eye(4).unsqueeze(0)
# results["K"] = torch.eye(3).unsqueeze(0)
# results["image"] = torch.zeros(1, 3, 1024, 1024).to(torch.uint8)
# results["depth"] = torch.zeros(1, 1, 1024, 1024).to(torch.float32)
return {
"x": {(0, 0): torch.rand(1, 3, 1024, 1024, dtype=torch.float32)},
"img_metas": {"val": torch.rand(1, 1024, dtype=torch.float32)},
}
def __getitem__(self, idx):
if isinstance(idx, (list, tuple)):
results = [self.get_single_item(i) for i in idx]
else:
results = self.get_single_item(idx)
return results
def __len__(self):
return len(self.dataset)