Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
from einops import rearrange | |
from unik3d.utils.constants import VERBOSE | |
from unik3d.utils.misc import profile_method | |
class ResidualConvUnit(nn.Module): | |
def __init__( | |
self, | |
dim, | |
kernel_size: int = 3, | |
padding_mode: str = "zeros", | |
dilation: int = 1, | |
layer_scale: float = 1.0, | |
use_norm: bool = False, | |
): | |
super().__init__() | |
self.conv1 = nn.Conv2d( | |
dim, | |
dim, | |
kernel_size=kernel_size, | |
padding=dilation * (kernel_size - 1) // 2, | |
dilation=dilation, | |
padding_mode=padding_mode, | |
) | |
self.conv2 = nn.Conv2d( | |
dim, | |
dim, | |
kernel_size=kernel_size, | |
padding=dilation * (kernel_size - 1) // 2, | |
dilation=dilation, | |
padding_mode=padding_mode, | |
) | |
self.activation = nn.LeakyReLU() | |
self.skip_add = nn.quantized.FloatFunctional() | |
self.gamma = ( | |
nn.Parameter(layer_scale * torch.ones(1, dim, 1, 1)) | |
if layer_scale > 0.0 | |
else 1.0 | |
) | |
self.norm1 = nn.GroupNorm(dim // 16, dim) if use_norm else nn.Identity() | |
self.norm2 = nn.GroupNorm(dim // 16, dim) if use_norm else nn.Identity() | |
def forward(self, x): | |
out = self.activation(x) | |
out = self.conv1(out) | |
out = self.norm1(out) | |
out = self.activation(out) | |
out = self.conv2(out) | |
out = self.norm2(out) | |
return self.skip_add.add(self.gamma * out, x) | |
class ResUpsampleBil(nn.Module): | |
def __init__( | |
self, | |
hidden_dim, | |
output_dim: int = None, | |
num_layers: int = 2, | |
kernel_size: int = 3, | |
layer_scale: float = 1.0, | |
padding_mode: str = "zeros", | |
use_norm: bool = False, | |
**kwargs, | |
): | |
super().__init__() | |
output_dim = output_dim if output_dim is not None else hidden_dim // 2 | |
self.convs = nn.ModuleList([]) | |
for _ in range(num_layers): | |
self.convs.append( | |
ResidualConvUnit( | |
hidden_dim, | |
kernel_size=kernel_size, | |
layer_scale=layer_scale, | |
padding_mode=padding_mode, | |
use_norm=use_norm, | |
) | |
) | |
self.up = nn.Sequential( | |
nn.Conv2d( | |
hidden_dim, | |
output_dim, | |
kernel_size=1, | |
padding=0, | |
padding_mode=padding_mode, | |
), | |
nn.Upsample(scale_factor=2, mode="bilinear", align_corners=False), | |
) | |
def forward(self, x: torch.Tensor): | |
for conv in self.convs: | |
x = conv(x) | |
x = self.up(x) | |
return x | |
class ResUpsample(nn.Module): | |
def __init__( | |
self, | |
hidden_dim, | |
num_layers: int = 2, | |
kernel_size: int = 3, | |
layer_scale: float = 1.0, | |
padding_mode: str = "zeros", | |
**kwargs, | |
): | |
super().__init__() | |
self.convs = nn.ModuleList([]) | |
for _ in range(num_layers): | |
self.convs.append( | |
ResidualConvUnit( | |
hidden_dim, | |
kernel_size=kernel_size, | |
layer_scale=layer_scale, | |
padding_mode=padding_mode, | |
) | |
) | |
self.up = nn.ConvTranspose2d( | |
hidden_dim, hidden_dim // 2, kernel_size=2, stride=2, padding=0 | |
) | |
def forward(self, x: torch.Tensor): | |
for conv in self.convs: | |
x = conv(x) | |
x = self.up(x) | |
return x | |
class ResUpsampleSH(nn.Module): | |
def __init__( | |
self, | |
hidden_dim, | |
num_layers: int = 2, | |
kernel_size: int = 3, | |
layer_scale: float = 1.0, | |
padding_mode: str = "zeros", | |
**kwargs, | |
): | |
super().__init__() | |
self.convs = nn.ModuleList([]) | |
for _ in range(num_layers): | |
self.convs.append( | |
ResidualConvUnit( | |
hidden_dim, | |
kernel_size=kernel_size, | |
layer_scale=layer_scale, | |
padding_mode=padding_mode, | |
) | |
) | |
self.up = nn.Sequential( | |
nn.PixelShuffle(2), | |
nn.Conv2d( | |
hidden_dim // 4, | |
hidden_dim // 2, | |
kernel_size=3, | |
padding=1, | |
padding_mode=padding_mode, | |
), | |
) | |
def forward(self, x: torch.Tensor): | |
for conv in self.convs: | |
x = conv(x) | |
x = self.up(x) | |
return x | |