Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint as checkpoint | |
from timm.models.layers import DropPath, to_2tuple, trunc_normal_ | |
from unik3d.utils.misc import get_params, load_checkpoint_swin | |
class Mlp(nn.Module): | |
def __init__( | |
self, | |
in_features, | |
hidden_features=None, | |
out_features=None, | |
act_layer=nn.GELU, | |
drop=0.0, | |
): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
def window_partition(x, window_size): | |
""" | |
Args: | |
x: (B, H, W, C) | |
window_size (int): window size | |
Returns: | |
windows: (num_windows*B, window_size, window_size, C) | |
""" | |
B, H, W, C = x.shape | |
x = x.view( | |
B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C | |
) | |
windows = ( | |
x.permute(0, 1, 3, 2, 4, 5) | |
.contiguous() | |
.view(-1, window_size[0], window_size[1], C) | |
) | |
return windows | |
def window_reverse(windows, window_size, H, W): | |
""" | |
Args: | |
windows: (num_windows*B, window_size, window_size, C) | |
window_size (int): Window size | |
H (int): Height of image | |
W (int): Width of image | |
Returns: | |
x: (B, H, W, C) | |
""" | |
B = int(windows.shape[0] / (H * W / window_size[0] / window_size[1])) | |
x = windows.view( | |
B, H // window_size[0], W // window_size[1], window_size[0], window_size[1], -1 | |
) | |
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) | |
return x | |
class WindowAttention(nn.Module): | |
r"""Window based multi-head self attention (W-MSA) module with relative position bias. | |
It supports both of shifted and non-shifted window. | |
Args: | |
dim (int): Number of input channels. | |
window_size (tuple[int]): The height and width of the window. | |
num_heads (int): Number of attention heads. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 | |
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 | |
pretrained_window_size (tuple[int]): The height and width of the window in pre-training. | |
""" | |
def __init__( | |
self, | |
dim, | |
window_size, | |
num_heads, | |
qkv_bias=True, | |
attn_drop=0.0, | |
proj_drop=0.0, | |
pretrained_window_size=[0, 0], | |
): | |
super().__init__() | |
self.dim = dim | |
self.window_size = window_size # Wh, Ww | |
self.pretrained_window_size = pretrained_window_size | |
self.num_heads = num_heads | |
self.logit_scale = nn.Parameter( | |
torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True | |
) | |
# mlp to generate continuous relative position bias | |
self.rpe_mlp = nn.Sequential( | |
nn.Linear(2, 512, bias=True), | |
nn.ReLU(inplace=True), | |
nn.Linear(512, num_heads, bias=False), | |
) | |
# get relative_coords_table | |
relative_coords_h = torch.arange( | |
-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32 | |
) | |
relative_coords_w = torch.arange( | |
-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32 | |
) | |
relative_coords_table = ( | |
torch.stack(torch.meshgrid([relative_coords_h, relative_coords_w])) | |
.permute(1, 2, 0) | |
.contiguous() | |
.unsqueeze(0) | |
) # 1, 2*Wh-1, 2*Ww-1, 2 | |
if pretrained_window_size[0] > 0: | |
relative_coords_table[:, :, :, 0] /= pretrained_window_size[0] - 1 | |
relative_coords_table[:, :, :, 1] /= pretrained_window_size[1] - 1 | |
else: | |
relative_coords_table[:, :, :, 0] /= self.window_size[0] - 1 | |
relative_coords_table[:, :, :, 1] /= self.window_size[1] - 1 | |
relative_coords_table *= 8 # normalize to -8, 8 | |
relative_coords_table = ( | |
torch.sign(relative_coords_table) | |
* torch.log2(torch.abs(relative_coords_table) + 1.0) | |
/ np.log2(8) | |
) | |
self.register_buffer("relative_coords_table", relative_coords_table) | |
# get pair-wise relative position index for each token inside the window | |
coords_h = torch.arange(self.window_size[0]) | |
coords_w = torch.arange(self.window_size[1]) | |
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww | |
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww | |
relative_coords = ( | |
coords_flatten[:, :, None] - coords_flatten[:, None, :] | |
) # 2, Wh*Ww, Wh*Ww | |
relative_coords = relative_coords.permute( | |
1, 2, 0 | |
).contiguous() # Wh*Ww, Wh*Ww, 2 | |
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 | |
relative_coords[:, :, 1] += self.window_size[1] - 1 | |
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 | |
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww | |
self.register_buffer("relative_position_index", relative_position_index) | |
self.qkv = nn.Linear(dim, dim * 3, bias=False) | |
if qkv_bias: | |
self.q_bias = nn.Parameter(torch.zeros(dim)) | |
self.v_bias = nn.Parameter(torch.zeros(dim)) | |
else: | |
self.q_bias = None | |
self.v_bias = None | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.softmax = nn.Softmax(dim=-1) | |
def forward(self, x, mask=None): | |
""" | |
Args: | |
x: input features with shape of (num_windows*B, N, C) | |
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None | |
""" | |
B_, N, C = x.shape | |
qkv_bias = None | |
if self.q_bias is not None: | |
qkv_bias = torch.cat( | |
( | |
self.q_bias, | |
torch.zeros_like(self.v_bias, requires_grad=False), | |
self.v_bias, | |
) | |
) | |
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) | |
qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) | |
q, k, v = ( | |
qkv[0], | |
qkv[1], | |
qkv[2], | |
) # make torchscript happy (cannot use tensor as tuple) | |
# cosine attention | |
attn = F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1) | |
logit_scale = torch.clamp( | |
self.logit_scale, | |
max=torch.log(torch.tensor(1.0 / 0.01, device=self.logit_scale.device)), | |
).exp() | |
attn = attn * logit_scale | |
relative_position_bias_table = self.rpe_mlp(self.relative_coords_table).view( | |
-1, self.num_heads | |
) | |
relative_position_bias = relative_position_bias_table[ | |
self.relative_position_index.view(-1) | |
].view( | |
self.window_size[0] * self.window_size[1], | |
self.window_size[0] * self.window_size[1], | |
-1, | |
) # Wh*Ww,Wh*Ww,nH | |
relative_position_bias = relative_position_bias.permute( | |
2, 0, 1 | |
).contiguous() # nH, Wh*Ww, Wh*Ww | |
relative_position_bias = 16 * torch.sigmoid(relative_position_bias) | |
attn = attn + relative_position_bias.unsqueeze(0) | |
if mask is not None: | |
nW = mask.shape[0] | |
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze( | |
1 | |
).unsqueeze(0) | |
attn = attn.view(-1, self.num_heads, N, N) | |
attn = self.softmax(attn) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B_, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
def extra_repr(self) -> str: | |
return ( | |
f"dim={self.dim}, window_size={self.window_size}, " | |
f"pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}" | |
) | |
def flops(self, N): | |
# calculate flops for 1 window with token length of N | |
flops = 0 | |
# qkv = self.qkv(x) | |
flops += N * self.dim * 3 * self.dim | |
# attn = (q @ k.transpose(-2, -1)) | |
flops += self.num_heads * N * (self.dim // self.num_heads) * N | |
# x = (attn @ v) | |
flops += self.num_heads * N * N * (self.dim // self.num_heads) | |
# x = self.proj(x) | |
flops += N * self.dim * self.dim | |
return flops | |
class SwinTransformerBlock(nn.Module): | |
r"""Swin Transformer Block. | |
Args: | |
dim (int): Number of input channels. | |
input_resolution (tuple[int]): Input resulotion. | |
num_heads (int): Number of attention heads. | |
window_size (int): Window size. | |
shift_size (int): Shift size for SW-MSA. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
drop (float, optional): Dropout rate. Default: 0.0 | |
attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
drop_path (float, optional): Stochastic depth rate. Default: 0.0 | |
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
pretrained_window_size (int): Window size in pre-training. | |
""" | |
def __init__( | |
self, | |
dim, | |
input_resolution, | |
num_heads, | |
window_size=7, | |
shift_size=0, | |
mlp_ratio=4.0, | |
qkv_bias=True, | |
drop=0.0, | |
attn_drop=0.0, | |
drop_path=0.0, | |
act_layer=nn.GELU, | |
norm_layer=nn.LayerNorm, | |
pretrained_window_size=0, | |
): | |
super().__init__() | |
self.dim = dim | |
self.num_heads = num_heads | |
self.window_size = window_size | |
self.shift_size = shift_size | |
self.mlp_ratio = mlp_ratio | |
if input_resolution[0] <= self.window_size[0]: | |
self.shift_size[0] = 0 | |
self.window_size[0] = input_resolution[0] | |
if input_resolution[1] <= self.window_size[1]: | |
self.shift_size[1] = 0 | |
self.window_size[1] = input_resolution[1] | |
assert ( | |
0 <= self.shift_size[1] < self.window_size[1] | |
), "shift_size must in 0-window_size" | |
assert ( | |
0 <= self.shift_size[0] < self.window_size[0] | |
), "shift_size must in 0-window_size" | |
self.norm1 = norm_layer(dim) | |
self.attn = WindowAttention( | |
dim, | |
window_size=self.window_size, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
attn_drop=attn_drop, | |
proj_drop=drop, | |
pretrained_window_size=pretrained_window_size, | |
) | |
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp( | |
in_features=dim, | |
hidden_features=mlp_hidden_dim, | |
act_layer=act_layer, | |
drop=drop, | |
) | |
# if self.shift_size > 0: | |
# # calculate attention mask for SW-MSA | |
# H, W = self.input_resolution | |
# img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 | |
# h_slices = (slice(0, -self.window_size), | |
# slice(-self.window_size, -self.shift_size), | |
# slice(-self.shift_size, None)) | |
# w_slices = (slice(0, -self.window_size), | |
# slice(-self.window_size, -self.shift_size), | |
# slice(-self.shift_size, None)) | |
# cnt = 0 | |
# for h in h_slices: | |
# for w in w_slices: | |
# img_mask[:, h, w, :] = cnt | |
# cnt += 1 | |
# mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1 | |
# mask_windows = mask_windows.view(-1, self.window_size * self.window_size) | |
# attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) | |
# attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) | |
# else: | |
# attn_mask = None | |
# self.register_buffer("attn_mask", attn_mask) | |
def forward(self, x, mask_matrix): | |
H, W = self.H, self.W | |
B, L, C = x.shape | |
assert L == H * W, "input feature has wrong size" | |
shortcut = x | |
x = x.view(B, H, W, C) | |
# pad feature maps to multiples of window size | |
pad_l = pad_t = 0 | |
pad_r = (self.window_size[1] - W % self.window_size[1]) % self.window_size[1] | |
pad_b = (self.window_size[0] - H % self.window_size[0]) % self.window_size[0] | |
if pad_r > 0 or pad_b > 0: | |
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) | |
_, Hp, Wp, _ = x.shape | |
# cyclic shift | |
if self.shift_size[0] > 0 or self.shift_size[1] > 0: | |
shifted_x = torch.roll( | |
x, shifts=(-self.shift_size[0], -self.shift_size[1]), dims=(1, 2) | |
) | |
attn_mask = mask_matrix | |
else: | |
shifted_x = x | |
attn_mask = None | |
# partition windows | |
x_windows = window_partition( | |
shifted_x, self.window_size | |
) # nW*B, window_size, window_size, C | |
x_windows = x_windows.view( | |
-1, self.window_size[0] * self.window_size[1], C | |
) # nW*B, window_size*window_size, C | |
# W-MSA/SW-MSA | |
attn_windows = self.attn( | |
x_windows, mask=attn_mask | |
) # nW*B, window_size*window_size, C | |
# merge windows | |
attn_windows = attn_windows.view( | |
-1, self.window_size[0], self.window_size[1], C | |
) | |
shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C | |
# reverse cyclic shift | |
if self.shift_size[0] > 0 or self.shift_size[1] > 0: | |
x = torch.roll( | |
shifted_x, shifts=(self.shift_size[0], self.shift_size[1]), dims=(1, 2) | |
) | |
else: | |
x = shifted_x | |
if pad_r > 0 or pad_b > 0: | |
x = x[:, :H, :W, :].contiguous() | |
x = x.view(B, H * W, C) | |
x = shortcut + self.drop_path(self.norm1(x)) | |
# FFN | |
x = x + self.drop_path(self.norm2(self.mlp(x))) | |
return x | |
def extra_repr(self) -> str: | |
return ( | |
f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " | |
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}" | |
) | |
def flops(self): | |
flops = 0 | |
H, W = self.input_resolution | |
# norm1 | |
flops += self.dim * H * W | |
# W-MSA/SW-MSA | |
nW = H * W / self.window_size / self.window_size | |
flops += nW * self.attn.flops(self.window_size * self.window_size) | |
# mlp | |
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio | |
# norm2 | |
flops += self.dim * H * W | |
return flops | |
class PatchMerging(nn.Module): | |
r"""Patch Merging Layer. | |
Args: | |
input_resolution (tuple[int]): Resolution of input feature. | |
dim (int): Number of input channels. | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
""" | |
def __init__(self, dim, norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.dim = dim | |
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) | |
self.norm = norm_layer(2 * dim) | |
def forward(self, x, H, W): | |
""" | |
x: B, H*W, C | |
""" | |
B, L, C = x.shape | |
assert L == H * W, "input feature has wrong size" | |
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." | |
x = x.view(B, H, W, C) | |
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C | |
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C | |
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C | |
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C | |
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C | |
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C | |
x = self.reduction(x) | |
x = self.norm(x) | |
return x | |
def extra_repr(self) -> str: | |
return f"input_resolution={self.input_resolution}, dim={self.dim}" | |
def flops(self): | |
H, W = self.input_resolution | |
flops = (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim | |
flops += H * W * self.dim // 2 | |
return flops | |
class BasicLayer(nn.Module): | |
"""A basic Swin Transformer layer for one stage. | |
Args: | |
dim (int): Number of input channels. | |
input_resolution (tuple[int]): Input resolution. | |
depth (int): Number of blocks. | |
num_heads (int): Number of attention heads. | |
window_size (int): Local window size. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
drop (float, optional): Dropout rate. Default: 0.0 | |
attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None | |
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. | |
pretrained_window_size (int): Local window size in pre-training. | |
""" | |
def __init__( | |
self, | |
dim, | |
input_resolution, | |
depth, | |
num_heads, | |
window_size, | |
use_shift=True, | |
mlp_ratio=4.0, | |
qkv_bias=True, | |
drop=0.0, | |
attn_drop=0.0, | |
drop_path=0.0, | |
norm_layer=nn.LayerNorm, | |
downsample=None, | |
use_checkpoint=False, | |
pretrained_window_size=0, | |
): | |
super().__init__() | |
self.dim = dim | |
self.depth = depth | |
self.use_checkpoint = use_checkpoint | |
self.window_size = list(to_2tuple(window_size)) | |
pretrained_window_size = list(to_2tuple(pretrained_window_size)) | |
self.shift_size = ( | |
[x // 2 for x in window_size] | |
if isinstance(window_size, (tuple, list)) | |
else window_size // 2 | |
) | |
self.shift_size = list(to_2tuple(self.shift_size)) | |
# build blocks | |
self.blocks = nn.ModuleList( | |
[ | |
SwinTransformerBlock( | |
dim=dim, | |
input_resolution=input_resolution, | |
num_heads=num_heads, | |
window_size=self.window_size, | |
shift_size=self.shift_size if (i % 2 and use_shift) else [0, 0], | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
drop=drop, | |
attn_drop=attn_drop, | |
drop_path=( | |
drop_path[i] if isinstance(drop_path, list) else drop_path | |
), | |
norm_layer=norm_layer, | |
pretrained_window_size=pretrained_window_size, | |
) | |
for i in range(depth) | |
] | |
) | |
# patch merging layer | |
if downsample is not None: | |
self.downsample = downsample(dim=dim, norm_layer=norm_layer) | |
else: | |
self.downsample = None | |
def forward(self, x, H, W): | |
# calculate attention mask for SW-MSA | |
Hp = int(np.ceil(H / self.window_size[0])) * self.window_size[0] | |
Wp = int(np.ceil(W / self.window_size[1])) * self.window_size[1] | |
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1 | |
h_slices = ( | |
slice(0, -self.window_size[0]), | |
slice(-self.window_size[0], -self.shift_size[0]), | |
slice(-self.shift_size[0], None), | |
) | |
w_slices = ( | |
slice(0, -self.window_size[1]), | |
slice(-self.window_size[1], -self.shift_size[1]), | |
slice(-self.shift_size[1], None), | |
) | |
cnt = 0 | |
for h in h_slices: | |
for w in w_slices: | |
img_mask[:, h, w, :] = cnt | |
cnt += 1 | |
mask_windows = window_partition( | |
img_mask, self.window_size | |
) # nW, window_size, window_size, 1 | |
mask_windows = mask_windows.view(-1, self.window_size[0] * self.window_size[1]) | |
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) | |
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill( | |
attn_mask == 0, float(0.0) | |
) | |
x_outs, cls_tokens = [], [] | |
for blk in self.blocks: | |
blk.H, blk.W = H, W | |
if self.use_checkpoint: | |
x = checkpoint.checkpoint(blk, x, attn_mask) | |
else: | |
x = blk(x, attn_mask) | |
x_outs.append(x) | |
if self.downsample is not None: | |
x_down = self.downsample(x, H, W) | |
Wh, Ww = (H + 1) // 2, (W + 1) // 2 | |
return x_outs, H, W, x_down, Wh, Ww | |
else: | |
return x_outs, H, W, x, H, W | |
def extra_repr(self) -> str: | |
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" | |
def flops(self): | |
flops = 0 | |
for blk in self.blocks: | |
flops += blk.flops() | |
if self.downsample is not None: | |
flops += self.downsample.flops() | |
return flops | |
def _init_respostnorm(self): | |
for blk in self.blocks: | |
nn.init.constant_(blk.norm1.bias, 0) | |
nn.init.constant_(blk.norm1.weight, 0) | |
nn.init.constant_(blk.norm2.bias, 0) | |
nn.init.constant_(blk.norm2.weight, 0) | |
class PatchEmbed(nn.Module): | |
r"""Image to Patch Embedding | |
Args: | |
img_size (int): Image size. Default: 224. | |
patch_size (int): Patch token size. Default: 4. | |
in_chans (int): Number of input image channels. Default: 3. | |
embed_dim (int): Number of linear projection output channels. Default: 96. | |
norm_layer (nn.Module, optional): Normalization layer. Default: None | |
""" | |
def __init__( | |
self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None | |
): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
patches_resolution = [ | |
img_size[0] // patch_size[0], | |
img_size[1] // patch_size[1], | |
] | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.patches_resolution = patches_resolution | |
self.num_patches = patches_resolution[0] * patches_resolution[1] | |
self.in_chans = in_chans | |
self.embed_dim = embed_dim | |
self.proj = nn.Conv2d( | |
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size | |
) | |
if norm_layer is not None: | |
self.norm = norm_layer(embed_dim) | |
else: | |
self.norm = None | |
def forward(self, x): | |
"""Forward function.""" | |
# padding | |
_, _, H, W = x.size() | |
if W % self.patch_size[1] != 0: | |
x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1])) | |
if H % self.patch_size[0] != 0: | |
x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0])) | |
x = self.proj(x) # B C Wh Ww | |
if self.norm is not None: | |
Wh, Ww = x.size(2), x.size(3) | |
x = self.norm(x.flatten(2).transpose(1, 2)) | |
x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww) | |
return x | |
def flops(self): | |
Ho, Wo = self.patches_resolution | |
flops = ( | |
Ho | |
* Wo | |
* self.embed_dim | |
* self.in_chans | |
* (self.patch_size[0] * self.patch_size[1]) | |
) | |
if self.norm is not None: | |
flops += Ho * Wo * self.embed_dim | |
return flops | |
class SwinTransformerV2(nn.Module): | |
r"""Swin Transformer | |
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - | |
https://arxiv.org/pdf/2103.14030 | |
Args: | |
img_size (int | tuple(int)): Input image size. Default 224 | |
patch_size (int | tuple(int)): Patch size. Default: 4 | |
in_chans (int): Number of input image channels. Default: 3 | |
num_classes (int): Number of classes for classification head. Default: 1000 | |
embed_dim (int): Patch embedding dimension. Default: 96 | |
depths (tuple(int)): Depth of each Swin Transformer layer. | |
num_heads (tuple(int)): Number of attention heads in different layers. | |
window_size (int): Window size. Default: 7 | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 | |
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True | |
drop_rate (float): Dropout rate. Default: 0 | |
attn_drop_rate (float): Attention dropout rate. Default: 0 | |
drop_path_rate (float): Stochastic depth rate. Default: 0.1 | |
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. | |
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False | |
patch_norm (bool): If True, add normalization after patch embedding. Default: True | |
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False | |
pretrained_window_sizes (tuple(int)): Pretrained window sizes of each layer. | |
""" | |
def __init__( | |
self, | |
img_size=224, | |
patch_size=4, | |
in_chans=3, | |
embed_dim=96, | |
depths=[2, 2, 6, 2], | |
num_heads=[3, 6, 12, 24], | |
window_size=7, | |
mlp_ratio=4.0, | |
qkv_bias=True, | |
drop_rate=0.0, | |
attn_drop_rate=0.0, | |
drop_path_rate=0.1, | |
norm_layer=nn.LayerNorm, | |
ape=False, | |
patch_norm=True, | |
use_checkpoint=False, | |
use_shift=True, | |
pretrained_window_sizes=[0, 0, 0, 0], | |
pretrained=None, | |
frozen_stages=-1, | |
output_idx=[2, 4, 22, 24], | |
**kwargs, | |
): | |
super().__init__() | |
self.num_layers = len(depths) | |
self.depths = output_idx | |
self.embed_dim = embed_dim | |
dims = [embed_dim * 2**i for i in range(len(depths))] | |
self.embed_dims = [ | |
int(dim) for i, dim in enumerate(dims) for _ in range(depths[i]) | |
] | |
self.ape = ape | |
self.patch_norm = patch_norm | |
self.num_features = [int(embed_dim * 2**i) for i in range(self.num_layers)] | |
self.mlp_ratio = mlp_ratio | |
self.frozen_stages = frozen_stages | |
if isinstance(window_size, int): | |
window_size = [window_size] * self.num_layers | |
if isinstance(use_shift, bool): | |
use_shift = [use_shift] * self.num_layers | |
# self.mask_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim)) | |
# trunc_normal_(self.mask_token, mean=0., std=.02) | |
# split image into non-overlapping patches | |
self.patch_embed = PatchEmbed( | |
img_size=img_size, | |
patch_size=patch_size, | |
in_chans=in_chans, | |
embed_dim=embed_dim, | |
norm_layer=norm_layer if self.patch_norm else None, | |
) | |
num_patches = self.patch_embed.num_patches | |
patches_resolution = self.patch_embed.patches_resolution | |
self.patches_resolution = patches_resolution | |
# absolute position embedding | |
if self.ape: | |
self.absolute_pos_embed = nn.Parameter( | |
torch.zeros(1, num_patches, embed_dim) | |
) | |
trunc_normal_(self.absolute_pos_embed, std=0.02) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
# stochastic depth | |
dpr = [ | |
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)) | |
] # stochastic depth decay rule | |
# build layers | |
self.layers = nn.ModuleList() | |
for i_layer in range(self.num_layers): | |
layer = BasicLayer( | |
dim=int(embed_dim * 2**i_layer), | |
input_resolution=[ | |
img_size[0] // (2 ** (2 + i_layer)), | |
img_size[1] // (2 ** (2 + i_layer)), | |
], | |
depth=depths[i_layer], | |
num_heads=num_heads[i_layer], | |
window_size=window_size[i_layer], | |
use_shift=use_shift[i_layer], | |
mlp_ratio=self.mlp_ratio, | |
qkv_bias=qkv_bias, | |
drop=drop_rate, | |
attn_drop=attn_drop_rate, | |
drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])], | |
norm_layer=norm_layer, | |
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, | |
use_checkpoint=use_checkpoint, | |
pretrained_window_size=pretrained_window_sizes[i_layer], | |
) | |
self.layers.append(layer) | |
self.apply(self._init_weights) | |
for bly in self.layers: | |
bly._init_respostnorm() | |
if pretrained is not None: | |
pretrained_state = torch.load(pretrained, map_location="cpu")["model"] | |
pretrained_state_filtered = load_checkpoint_swin(self, pretrained_state) | |
msg = self.load_state_dict(pretrained_state_filtered, strict=False) | |
self._freeze_stages() | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=0.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def no_weight_decay(self): | |
return {"absolute_pos_embed"} | |
def no_weight_decay_keywords(self): | |
return {"rpe_mlp", "logit_scale", "relative_position_bias_table", "mask_token"} | |
def forward(self, x, mask=None): | |
"""Forward function.""" | |
# Add requires_grad_() to all input to support freezing with gradient checkpointing! | |
x = self.patch_embed(x.requires_grad_()) | |
B, Wh, Ww = x.size(0), x.size(2), x.size(3) | |
if self.ape: | |
# interpolate the position embedding to the corresponding size | |
absolute_pos_embed = F.interpolate( | |
self.absolute_pos_embed, | |
size=(Wh, Ww), | |
mode="bicubic", | |
align_corners=True, | |
) | |
x = (x + absolute_pos_embed).flatten(2).transpose(1, 2) # B Wh*Ww C | |
else: | |
x = x.flatten(2).transpose(1, 2) | |
x = self.pos_drop(x) | |
# B, L, _ = x.shape | |
# if mask is not None: | |
# mask_tokens = self.mask_token.expand(B, L, -1) | |
# mask = mask.flatten(1).unsqueeze(-1).type_as(mask_tokens) | |
# else: | |
# mask = torch.zeros_like(x) | |
# mask_tokens = torch.zeros_like(self.mask_token).expand(B, L, -1) | |
# x = x * (1. - mask) + mask_tokens * mask | |
outs, cls_tokens = [], [] | |
for i in range(self.num_layers): | |
layer = self.layers[i] | |
x_outs, H, W, x, Wh, Ww = layer(x.requires_grad_(), Wh, Ww) | |
out = [ | |
x_out.view(-1, H, W, self.num_features[i]).contiguous() | |
for x_out in x_outs | |
] | |
outs.extend(out) | |
cls_token_ = [x.mean(dim=(1, 2)).unsqueeze(1).contiguous() for x in out] | |
cls_tokens.extend(cls_token_) | |
return outs, cls_tokens | |
def train(self, mode=True): | |
super().train(mode) | |
self._freeze_stages() | |
def freeze(self) -> None: | |
for module in self.modules(): | |
module.eval() | |
for parameters in self.parameters(): | |
parameters.requires_grad = False | |
def _freeze_stages(self): | |
if self.frozen_stages >= 0: | |
self.patch_embed.eval() | |
for param in self.patch_embed.parameters(): | |
param.requires_grad = False | |
if self.ape: | |
self.absolute_pos_embed.requires_grad = False | |
self.pos_drop.eval() | |
for i in range(1, self.frozen_stages + 1): | |
m = self.layers[i - 1] | |
m.eval() | |
for param in m.parameters(): | |
param.requires_grad = False | |
def flops(self): | |
flops = 0 | |
flops += self.patch_embed.flops() | |
for i, layer in enumerate(self.layers): | |
flops += layer.flops() | |
flops += ( | |
self.num_features | |
* self.patches_resolution[0] | |
* self.patches_resolution[1] | |
// (2**self.num_layers) | |
) | |
return flops | |
def get_params(self, lr, wd, *args, **kwargs): | |
encoder_p, encoder_lr = get_params(self, lr, wd) | |
return encoder_p, encoder_lr | |
def build(cls, config): | |
obj = globals()[config["name"]](config) | |
return obj | |