Luigi Piccinelli
init demo
1ea89dd
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from unik3d.utils.misc import get_params, load_checkpoint_swin
class Mlp(nn.Module):
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.0,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
def window_partition(x, window_size):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B, H, W, C = x.shape
x = x.view(
B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C
)
windows = (
x.permute(0, 1, 3, 2, 4, 5)
.contiguous()
.view(-1, window_size[0], window_size[1], C)
)
return windows
def window_reverse(windows, window_size, H, W):
"""
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C)
"""
B = int(windows.shape[0] / (H * W / window_size[0] / window_size[1]))
x = windows.view(
B, H // window_size[0], W // window_size[1], window_size[0], window_size[1], -1
)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x
class WindowAttention(nn.Module):
r"""Window based multi-head self attention (W-MSA) module with relative position bias.
It supports both of shifted and non-shifted window.
Args:
dim (int): Number of input channels.
window_size (tuple[int]): The height and width of the window.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
pretrained_window_size (tuple[int]): The height and width of the window in pre-training.
"""
def __init__(
self,
dim,
window_size,
num_heads,
qkv_bias=True,
attn_drop=0.0,
proj_drop=0.0,
pretrained_window_size=[0, 0],
):
super().__init__()
self.dim = dim
self.window_size = window_size # Wh, Ww
self.pretrained_window_size = pretrained_window_size
self.num_heads = num_heads
self.logit_scale = nn.Parameter(
torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True
)
# mlp to generate continuous relative position bias
self.rpe_mlp = nn.Sequential(
nn.Linear(2, 512, bias=True),
nn.ReLU(inplace=True),
nn.Linear(512, num_heads, bias=False),
)
# get relative_coords_table
relative_coords_h = torch.arange(
-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32
)
relative_coords_w = torch.arange(
-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32
)
relative_coords_table = (
torch.stack(torch.meshgrid([relative_coords_h, relative_coords_w]))
.permute(1, 2, 0)
.contiguous()
.unsqueeze(0)
) # 1, 2*Wh-1, 2*Ww-1, 2
if pretrained_window_size[0] > 0:
relative_coords_table[:, :, :, 0] /= pretrained_window_size[0] - 1
relative_coords_table[:, :, :, 1] /= pretrained_window_size[1] - 1
else:
relative_coords_table[:, :, :, 0] /= self.window_size[0] - 1
relative_coords_table[:, :, :, 1] /= self.window_size[1] - 1
relative_coords_table *= 8 # normalize to -8, 8
relative_coords_table = (
torch.sign(relative_coords_table)
* torch.log2(torch.abs(relative_coords_table) + 1.0)
/ np.log2(8)
)
self.register_buffer("relative_coords_table", relative_coords_table)
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = (
coords_flatten[:, :, None] - coords_flatten[:, None, :]
) # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(
1, 2, 0
).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
self.register_buffer("relative_position_index", relative_position_index)
self.qkv = nn.Linear(dim, dim * 3, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(dim))
self.v_bias = nn.Parameter(torch.zeros(dim))
else:
self.q_bias = None
self.v_bias = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, mask=None):
"""
Args:
x: input features with shape of (num_windows*B, N, C)
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
"""
B_, N, C = x.shape
qkv_bias = None
if self.q_bias is not None:
qkv_bias = torch.cat(
(
self.q_bias,
torch.zeros_like(self.v_bias, requires_grad=False),
self.v_bias,
)
)
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = (
qkv[0],
qkv[1],
qkv[2],
) # make torchscript happy (cannot use tensor as tuple)
# cosine attention
attn = F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1)
logit_scale = torch.clamp(
self.logit_scale,
max=torch.log(torch.tensor(1.0 / 0.01, device=self.logit_scale.device)),
).exp()
attn = attn * logit_scale
relative_position_bias_table = self.rpe_mlp(self.relative_coords_table).view(
-1, self.num_heads
)
relative_position_bias = relative_position_bias_table[
self.relative_position_index.view(-1)
].view(
self.window_size[0] * self.window_size[1],
self.window_size[0] * self.window_size[1],
-1,
) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(
2, 0, 1
).contiguous() # nH, Wh*Ww, Wh*Ww
relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
nW = mask.shape[0]
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(
1
).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
def extra_repr(self) -> str:
return (
f"dim={self.dim}, window_size={self.window_size}, "
f"pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}"
)
def flops(self, N):
# calculate flops for 1 window with token length of N
flops = 0
# qkv = self.qkv(x)
flops += N * self.dim * 3 * self.dim
# attn = (q @ k.transpose(-2, -1))
flops += self.num_heads * N * (self.dim // self.num_heads) * N
# x = (attn @ v)
flops += self.num_heads * N * N * (self.dim // self.num_heads)
# x = self.proj(x)
flops += N * self.dim * self.dim
return flops
class SwinTransformerBlock(nn.Module):
r"""Swin Transformer Block.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resulotion.
num_heads (int): Number of attention heads.
window_size (int): Window size.
shift_size (int): Shift size for SW-MSA.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float, optional): Stochastic depth rate. Default: 0.0
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
pretrained_window_size (int): Window size in pre-training.
"""
def __init__(
self,
dim,
input_resolution,
num_heads,
window_size=7,
shift_size=0,
mlp_ratio=4.0,
qkv_bias=True,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
pretrained_window_size=0,
):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.window_size = window_size
self.shift_size = shift_size
self.mlp_ratio = mlp_ratio
if input_resolution[0] <= self.window_size[0]:
self.shift_size[0] = 0
self.window_size[0] = input_resolution[0]
if input_resolution[1] <= self.window_size[1]:
self.shift_size[1] = 0
self.window_size[1] = input_resolution[1]
assert (
0 <= self.shift_size[1] < self.window_size[1]
), "shift_size must in 0-window_size"
assert (
0 <= self.shift_size[0] < self.window_size[0]
), "shift_size must in 0-window_size"
self.norm1 = norm_layer(dim)
self.attn = WindowAttention(
dim,
window_size=self.window_size,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=drop,
pretrained_window_size=pretrained_window_size,
)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
# if self.shift_size > 0:
# # calculate attention mask for SW-MSA
# H, W = self.input_resolution
# img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
# h_slices = (slice(0, -self.window_size),
# slice(-self.window_size, -self.shift_size),
# slice(-self.shift_size, None))
# w_slices = (slice(0, -self.window_size),
# slice(-self.window_size, -self.shift_size),
# slice(-self.shift_size, None))
# cnt = 0
# for h in h_slices:
# for w in w_slices:
# img_mask[:, h, w, :] = cnt
# cnt += 1
# mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
# mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
# attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
# attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
# else:
# attn_mask = None
# self.register_buffer("attn_mask", attn_mask)
def forward(self, x, mask_matrix):
H, W = self.H, self.W
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
shortcut = x
x = x.view(B, H, W, C)
# pad feature maps to multiples of window size
pad_l = pad_t = 0
pad_r = (self.window_size[1] - W % self.window_size[1]) % self.window_size[1]
pad_b = (self.window_size[0] - H % self.window_size[0]) % self.window_size[0]
if pad_r > 0 or pad_b > 0:
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
_, Hp, Wp, _ = x.shape
# cyclic shift
if self.shift_size[0] > 0 or self.shift_size[1] > 0:
shifted_x = torch.roll(
x, shifts=(-self.shift_size[0], -self.shift_size[1]), dims=(1, 2)
)
attn_mask = mask_matrix
else:
shifted_x = x
attn_mask = None
# partition windows
x_windows = window_partition(
shifted_x, self.window_size
) # nW*B, window_size, window_size, C
x_windows = x_windows.view(
-1, self.window_size[0] * self.window_size[1], C
) # nW*B, window_size*window_size, C
# W-MSA/SW-MSA
attn_windows = self.attn(
x_windows, mask=attn_mask
) # nW*B, window_size*window_size, C
# merge windows
attn_windows = attn_windows.view(
-1, self.window_size[0], self.window_size[1], C
)
shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
# reverse cyclic shift
if self.shift_size[0] > 0 or self.shift_size[1] > 0:
x = torch.roll(
shifted_x, shifts=(self.shift_size[0], self.shift_size[1]), dims=(1, 2)
)
else:
x = shifted_x
if pad_r > 0 or pad_b > 0:
x = x[:, :H, :W, :].contiguous()
x = x.view(B, H * W, C)
x = shortcut + self.drop_path(self.norm1(x))
# FFN
x = x + self.drop_path(self.norm2(self.mlp(x)))
return x
def extra_repr(self) -> str:
return (
f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, "
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
)
def flops(self):
flops = 0
H, W = self.input_resolution
# norm1
flops += self.dim * H * W
# W-MSA/SW-MSA
nW = H * W / self.window_size / self.window_size
flops += nW * self.attn.flops(self.window_size * self.window_size)
# mlp
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
# norm2
flops += self.dim * H * W
return flops
class PatchMerging(nn.Module):
r"""Patch Merging Layer.
Args:
input_resolution (tuple[int]): Resolution of input feature.
dim (int): Number of input channels.
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, dim, norm_layer=nn.LayerNorm):
super().__init__()
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(2 * dim)
def forward(self, x, H, W):
"""
x: B, H*W, C
"""
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
x = x.view(B, H, W, C)
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
x = self.reduction(x)
x = self.norm(x)
return x
def extra_repr(self) -> str:
return f"input_resolution={self.input_resolution}, dim={self.dim}"
def flops(self):
H, W = self.input_resolution
flops = (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
flops += H * W * self.dim // 2
return flops
class BasicLayer(nn.Module):
"""A basic Swin Transformer layer for one stage.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resolution.
depth (int): Number of blocks.
num_heads (int): Number of attention heads.
window_size (int): Local window size.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
pretrained_window_size (int): Local window size in pre-training.
"""
def __init__(
self,
dim,
input_resolution,
depth,
num_heads,
window_size,
use_shift=True,
mlp_ratio=4.0,
qkv_bias=True,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
norm_layer=nn.LayerNorm,
downsample=None,
use_checkpoint=False,
pretrained_window_size=0,
):
super().__init__()
self.dim = dim
self.depth = depth
self.use_checkpoint = use_checkpoint
self.window_size = list(to_2tuple(window_size))
pretrained_window_size = list(to_2tuple(pretrained_window_size))
self.shift_size = (
[x // 2 for x in window_size]
if isinstance(window_size, (tuple, list))
else window_size // 2
)
self.shift_size = list(to_2tuple(self.shift_size))
# build blocks
self.blocks = nn.ModuleList(
[
SwinTransformerBlock(
dim=dim,
input_resolution=input_resolution,
num_heads=num_heads,
window_size=self.window_size,
shift_size=self.shift_size if (i % 2 and use_shift) else [0, 0],
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
drop=drop,
attn_drop=attn_drop,
drop_path=(
drop_path[i] if isinstance(drop_path, list) else drop_path
),
norm_layer=norm_layer,
pretrained_window_size=pretrained_window_size,
)
for i in range(depth)
]
)
# patch merging layer
if downsample is not None:
self.downsample = downsample(dim=dim, norm_layer=norm_layer)
else:
self.downsample = None
def forward(self, x, H, W):
# calculate attention mask for SW-MSA
Hp = int(np.ceil(H / self.window_size[0])) * self.window_size[0]
Wp = int(np.ceil(W / self.window_size[1])) * self.window_size[1]
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
h_slices = (
slice(0, -self.window_size[0]),
slice(-self.window_size[0], -self.shift_size[0]),
slice(-self.shift_size[0], None),
)
w_slices = (
slice(0, -self.window_size[1]),
slice(-self.window_size[1], -self.shift_size[1]),
slice(-self.shift_size[1], None),
)
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(
img_mask, self.window_size
) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1, self.window_size[0] * self.window_size[1])
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(
attn_mask == 0, float(0.0)
)
x_outs, cls_tokens = [], []
for blk in self.blocks:
blk.H, blk.W = H, W
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x, attn_mask)
else:
x = blk(x, attn_mask)
x_outs.append(x)
if self.downsample is not None:
x_down = self.downsample(x, H, W)
Wh, Ww = (H + 1) // 2, (W + 1) // 2
return x_outs, H, W, x_down, Wh, Ww
else:
return x_outs, H, W, x, H, W
def extra_repr(self) -> str:
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
def flops(self):
flops = 0
for blk in self.blocks:
flops += blk.flops()
if self.downsample is not None:
flops += self.downsample.flops()
return flops
def _init_respostnorm(self):
for blk in self.blocks:
nn.init.constant_(blk.norm1.bias, 0)
nn.init.constant_(blk.norm1.weight, 0)
nn.init.constant_(blk.norm2.bias, 0)
nn.init.constant_(blk.norm2.weight, 0)
class PatchEmbed(nn.Module):
r"""Image to Patch Embedding
Args:
img_size (int): Image size. Default: 224.
patch_size (int): Patch token size. Default: 4.
in_chans (int): Number of input image channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Module, optional): Normalization layer. Default: None
"""
def __init__(
self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None
):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
patches_resolution = [
img_size[0] // patch_size[0],
img_size[1] // patch_size[1],
]
self.img_size = img_size
self.patch_size = patch_size
self.patches_resolution = patches_resolution
self.num_patches = patches_resolution[0] * patches_resolution[1]
self.in_chans = in_chans
self.embed_dim = embed_dim
self.proj = nn.Conv2d(
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size
)
if norm_layer is not None:
self.norm = norm_layer(embed_dim)
else:
self.norm = None
def forward(self, x):
"""Forward function."""
# padding
_, _, H, W = x.size()
if W % self.patch_size[1] != 0:
x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
if H % self.patch_size[0] != 0:
x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
x = self.proj(x) # B C Wh Ww
if self.norm is not None:
Wh, Ww = x.size(2), x.size(3)
x = self.norm(x.flatten(2).transpose(1, 2))
x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
return x
def flops(self):
Ho, Wo = self.patches_resolution
flops = (
Ho
* Wo
* self.embed_dim
* self.in_chans
* (self.patch_size[0] * self.patch_size[1])
)
if self.norm is not None:
flops += Ho * Wo * self.embed_dim
return flops
class SwinTransformerV2(nn.Module):
r"""Swin Transformer
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
https://arxiv.org/pdf/2103.14030
Args:
img_size (int | tuple(int)): Input image size. Default 224
patch_size (int | tuple(int)): Patch size. Default: 4
in_chans (int): Number of input image channels. Default: 3
num_classes (int): Number of classes for classification head. Default: 1000
embed_dim (int): Patch embedding dimension. Default: 96
depths (tuple(int)): Depth of each Swin Transformer layer.
num_heads (tuple(int)): Number of attention heads in different layers.
window_size (int): Window size. Default: 7
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
drop_rate (float): Dropout rate. Default: 0
attn_drop_rate (float): Attention dropout rate. Default: 0
drop_path_rate (float): Stochastic depth rate. Default: 0.1
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
patch_norm (bool): If True, add normalization after patch embedding. Default: True
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
pretrained_window_sizes (tuple(int)): Pretrained window sizes of each layer.
"""
def __init__(
self,
img_size=224,
patch_size=4,
in_chans=3,
embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
mlp_ratio=4.0,
qkv_bias=True,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.1,
norm_layer=nn.LayerNorm,
ape=False,
patch_norm=True,
use_checkpoint=False,
use_shift=True,
pretrained_window_sizes=[0, 0, 0, 0],
pretrained=None,
frozen_stages=-1,
output_idx=[2, 4, 22, 24],
**kwargs,
):
super().__init__()
self.num_layers = len(depths)
self.depths = output_idx
self.embed_dim = embed_dim
dims = [embed_dim * 2**i for i in range(len(depths))]
self.embed_dims = [
int(dim) for i, dim in enumerate(dims) for _ in range(depths[i])
]
self.ape = ape
self.patch_norm = patch_norm
self.num_features = [int(embed_dim * 2**i) for i in range(self.num_layers)]
self.mlp_ratio = mlp_ratio
self.frozen_stages = frozen_stages
if isinstance(window_size, int):
window_size = [window_size] * self.num_layers
if isinstance(use_shift, bool):
use_shift = [use_shift] * self.num_layers
# self.mask_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
# trunc_normal_(self.mask_token, mean=0., std=.02)
# split image into non-overlapping patches
self.patch_embed = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
norm_layer=norm_layer if self.patch_norm else None,
)
num_patches = self.patch_embed.num_patches
patches_resolution = self.patch_embed.patches_resolution
self.patches_resolution = patches_resolution
# absolute position embedding
if self.ape:
self.absolute_pos_embed = nn.Parameter(
torch.zeros(1, num_patches, embed_dim)
)
trunc_normal_(self.absolute_pos_embed, std=0.02)
self.pos_drop = nn.Dropout(p=drop_rate)
# stochastic depth
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
] # stochastic depth decay rule
# build layers
self.layers = nn.ModuleList()
for i_layer in range(self.num_layers):
layer = BasicLayer(
dim=int(embed_dim * 2**i_layer),
input_resolution=[
img_size[0] // (2 ** (2 + i_layer)),
img_size[1] // (2 ** (2 + i_layer)),
],
depth=depths[i_layer],
num_heads=num_heads[i_layer],
window_size=window_size[i_layer],
use_shift=use_shift[i_layer],
mlp_ratio=self.mlp_ratio,
qkv_bias=qkv_bias,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])],
norm_layer=norm_layer,
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
use_checkpoint=use_checkpoint,
pretrained_window_size=pretrained_window_sizes[i_layer],
)
self.layers.append(layer)
self.apply(self._init_weights)
for bly in self.layers:
bly._init_respostnorm()
if pretrained is not None:
pretrained_state = torch.load(pretrained, map_location="cpu")["model"]
pretrained_state_filtered = load_checkpoint_swin(self, pretrained_state)
msg = self.load_state_dict(pretrained_state_filtered, strict=False)
self._freeze_stages()
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {"absolute_pos_embed"}
@torch.jit.ignore
def no_weight_decay_keywords(self):
return {"rpe_mlp", "logit_scale", "relative_position_bias_table", "mask_token"}
def forward(self, x, mask=None):
"""Forward function."""
# Add requires_grad_() to all input to support freezing with gradient checkpointing!
x = self.patch_embed(x.requires_grad_())
B, Wh, Ww = x.size(0), x.size(2), x.size(3)
if self.ape:
# interpolate the position embedding to the corresponding size
absolute_pos_embed = F.interpolate(
self.absolute_pos_embed,
size=(Wh, Ww),
mode="bicubic",
align_corners=True,
)
x = (x + absolute_pos_embed).flatten(2).transpose(1, 2) # B Wh*Ww C
else:
x = x.flatten(2).transpose(1, 2)
x = self.pos_drop(x)
# B, L, _ = x.shape
# if mask is not None:
# mask_tokens = self.mask_token.expand(B, L, -1)
# mask = mask.flatten(1).unsqueeze(-1).type_as(mask_tokens)
# else:
# mask = torch.zeros_like(x)
# mask_tokens = torch.zeros_like(self.mask_token).expand(B, L, -1)
# x = x * (1. - mask) + mask_tokens * mask
outs, cls_tokens = [], []
for i in range(self.num_layers):
layer = self.layers[i]
x_outs, H, W, x, Wh, Ww = layer(x.requires_grad_(), Wh, Ww)
out = [
x_out.view(-1, H, W, self.num_features[i]).contiguous()
for x_out in x_outs
]
outs.extend(out)
cls_token_ = [x.mean(dim=(1, 2)).unsqueeze(1).contiguous() for x in out]
cls_tokens.extend(cls_token_)
return outs, cls_tokens
def train(self, mode=True):
super().train(mode)
self._freeze_stages()
def freeze(self) -> None:
for module in self.modules():
module.eval()
for parameters in self.parameters():
parameters.requires_grad = False
def _freeze_stages(self):
if self.frozen_stages >= 0:
self.patch_embed.eval()
for param in self.patch_embed.parameters():
param.requires_grad = False
if self.ape:
self.absolute_pos_embed.requires_grad = False
self.pos_drop.eval()
for i in range(1, self.frozen_stages + 1):
m = self.layers[i - 1]
m.eval()
for param in m.parameters():
param.requires_grad = False
def flops(self):
flops = 0
flops += self.patch_embed.flops()
for i, layer in enumerate(self.layers):
flops += layer.flops()
flops += (
self.num_features
* self.patches_resolution[0]
* self.patches_resolution[1]
// (2**self.num_layers)
)
return flops
def get_params(self, lr, wd, *args, **kwargs):
encoder_p, encoder_lr = get_params(self, lr, wd)
return encoder_p, encoder_lr
@classmethod
def build(cls, config):
obj = globals()[config["name"]](config)
return obj