Spaces:
Running
on
Zero
Running
on
Zero
from functools import partial | |
import torch | |
import torch.nn as nn | |
from timm.models.vision_transformer import _cfg | |
from unik3d.models.backbones import (ConvNeXt, ConvNeXtV2, SwinTransformerV2, | |
_make_dinov2_model) | |
def swin2_tiny( | |
config, | |
pretrained=None, | |
*args, | |
**kwargs, | |
): | |
model = SwinTransformerV2( | |
img_size=config["image_shape"], | |
patch_size=4, | |
window_size=config.get("window_size", 16), | |
embed_dim=96, | |
num_heads=[3, 6, 12, 24], | |
mlp_ratios=[4, 4, 4, 4], | |
qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
depths=[2, 2, 6, 2], | |
drop_path_rate=0.2, | |
pretrained=pretrained, | |
pretrained_window_sizes=[12, 12, 12, 6], | |
output_idx=config.get("output_idx", [2, 4, 10, 12]), | |
use_shift=config.get("use_shift", True), | |
use_checkpoint=config.get("use_checkpoint", False), | |
frozen_stages=-1, | |
) | |
model.default_cfg = _cfg() | |
return model | |
def swin2_base( | |
config, | |
pretrained=None, | |
*args, | |
**kwargs, | |
): | |
model = SwinTransformerV2( | |
img_size=config["image_shape"], | |
patch_size=4, | |
window_size=config.get("window_size", 12), | |
embed_dim=128, | |
num_heads=[4, 8, 16, 32], | |
mlp_ratios=[4, 4, 4, 4], | |
qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
depths=[2, 2, 18, 2], | |
drop_path_rate=0.3, | |
pretrained=pretrained, | |
pretrained_window_sizes=[12, 12, 12, 6], | |
use_shift=config.get("use_shift", True), | |
use_checkpoint=config["use_checkpoint"], | |
frozen_stages=-1, | |
) | |
model.default_cfg = _cfg() | |
return model | |
def swin2_large( | |
config, | |
pretrained=None, | |
*args, | |
**kwargs, | |
): | |
model = SwinTransformerV2( | |
img_size=config["image_shape"], | |
patch_size=4, | |
window_size=config.get("window_size", 12), | |
embed_dim=192, | |
num_heads=[6, 12, 24, 48], | |
mlp_ratios=[4, 4, 4, 4], | |
qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
depths=[2, 2, 18, 2], | |
drop_path_rate=0.3, | |
pretrained=pretrained, | |
pretrained_window_sizes=[12, 12, 12, 6], | |
use_shift=config.get("use_shift", True), | |
use_checkpoint=config["use_checkpoint"], | |
frozen_stages=-1, | |
) | |
model.default_cfg = _cfg() | |
return model | |
def convnextv2_base(config, **kwargs): | |
model = ConvNeXtV2( | |
depths=[3, 3, 27, 3], | |
dims=[128, 256, 512, 1024], | |
output_idx=config.get("output_idx", [3, 6, 33, 36]), | |
use_checkpoint=config["use_checkpoint"], | |
**kwargs, | |
) | |
url = "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_base_22k_384_ema.pt" | |
state_dict = torch.hub.load_state_dict_from_url( | |
url, map_location="cpu", progress=False | |
)["model"] | |
info = model.load_state_dict(state_dict, strict=False) | |
print(info) | |
return model | |
def convnextv2_large(config, **kwargs): | |
model = ConvNeXtV2( | |
depths=[3, 3, 27, 3], | |
dims=[192, 384, 768, 1536], | |
output_idx=config.get("output_idx", [3, 6, 33, 36]), | |
use_checkpoint=config["use_checkpoint"], | |
**kwargs, | |
) | |
url = "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_large_22k_384_ema.pt" | |
state_dict = torch.hub.load_state_dict_from_url( | |
url, map_location="cpu", progress=False | |
)["model"] | |
info = model.load_state_dict(state_dict, strict=False) | |
print(info) | |
return model | |
def convnextv2_large_mae(config, **kwargs): | |
model = ConvNeXtV2( | |
depths=[3, 3, 27, 3], | |
dims=[192, 384, 768, 1536], | |
output_idx=config.get("output_idx", [3, 6, 33, 36]), | |
use_checkpoint=config["use_checkpoint"], | |
**kwargs, | |
) | |
url = "https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_large_1k_224_fcmae.pt" | |
state_dict = torch.hub.load_state_dict_from_url( | |
url, map_location="cpu", progress=False | |
)["model"] | |
info = model.load_state_dict(state_dict, strict=False) | |
print(info) | |
return model | |
def convnext_large(config, **kwargs): | |
model = ConvNeXt( | |
depths=[3, 3, 27, 3], | |
dims=[192, 384, 768, 1536], | |
output_idx=config.get("output_idx", [3, 6, 33, 36]), | |
use_checkpoint=config.get("use_checkpoint", False), | |
drop_path_rate=config.get("drop_path", 0.0), | |
**kwargs, | |
) | |
from huggingface_hub import hf_hub_download | |
from huggingface_hub.utils import disable_progress_bars | |
from unik3d.models.backbones.convnext import HF_URL, checkpoint_filter_fn | |
disable_progress_bars() | |
repo_id, filename = HF_URL["convnext_large"] | |
state_dict = torch.load(hf_hub_download(repo_id=repo_id, filename=filename)) | |
state_dict = checkpoint_filter_fn(state_dict, model) | |
info = model.load_state_dict(state_dict, strict=False) | |
print(info) | |
return model | |
def dinov2_vits14(config, pretrained: bool = True, **kwargs): | |
vit = _make_dinov2_model( | |
arch_name="vit_small", | |
pretrained=config["pretrained"], | |
output_idx=config.get("output_idx", [3, 6, 9, 12]), | |
checkpoint=config.get("use_checkpoint", False), | |
drop_path_rate=config.get("drop_path", 0.0), | |
num_register_tokens=config.get("num_register_tokens", 0), | |
use_norm=config.get("use_norm", False), | |
interpolate_offset=config.get("interpolate_offset", 0.0), | |
frozen_stages=config.get("frozen_stages", 0), | |
freeze_norm=config.get("freeze_norm", False), | |
**kwargs, | |
) | |
return vit | |
def dinov2_vitb14(config, pretrained: bool = True, **kwargs): | |
vit = _make_dinov2_model( | |
arch_name="vit_base", | |
pretrained=config["pretrained"], | |
output_idx=config.get("output_idx", [3, 6, 9, 12]), | |
checkpoint=config.get("use_checkpoint", False), | |
drop_path_rate=config.get("drop_path", 0.0), | |
num_register_tokens=config.get("num_register_tokens", 0), | |
use_norm=config.get("use_norm", False), | |
interpolate_offset=config.get("interpolate_offset", 0.0), | |
frozen_stages=config.get("frozen_stages", 0), | |
freeze_norm=config.get("freeze_norm", False), | |
**kwargs, | |
) | |
return vit | |
def dinov2_vitl14(config, pretrained: str = "", **kwargs): | |
vit = _make_dinov2_model( | |
arch_name="vit_large", | |
pretrained=config["pretrained"], | |
output_idx=config.get("output_idx", [5, 12, 18, 24]), | |
checkpoint=config.get("use_checkpoint", False), | |
drop_path_rate=config.get("drop_path", 0.0), | |
num_register_tokens=config.get("num_register_tokens", 0), | |
use_norm=config.get("use_norm", False), | |
interpolate_offset=config.get("interpolate_offset", 0.0), | |
frozen_stages=config.get("frozen_stages", 0), | |
freeze_norm=config.get("freeze_norm", False), | |
**kwargs, | |
) | |
return vit | |
def dinov2_vitg14(config, pretrained: str = "", **kwargs): | |
vit = _make_dinov2_model( | |
arch_name="vit_giant2", | |
ffn_layer="swiglufused", | |
pretrained=config["pretrained"], | |
output_idx=config.get("output_idx", [10, 20, 30, 40]), | |
checkpoint=config.get("use_checkpoint", False), | |
drop_path_rate=config.get("drop_path", 0.0), | |
num_register_tokens=config.get("num_register_tokens", 0), | |
use_norm=config.get("use_norm", False), | |
interpolate_offset=config.get("interpolate_offset", 0.0), | |
**kwargs, | |
) | |
return vit | |