Spaces:
Running
on
Zero
Running
on
Zero
Luigi Piccinelli
commited on
Commit
·
39aba6e
1
Parent(s):
1ea89dd
remove fp16
Browse files- app.py +38 -22
- gradio_demo.py +34 -17
- unik3d/models/unik3d.py +6 -4
app.py
CHANGED
@@ -1,10 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gc
|
2 |
import os
|
3 |
import shutil
|
|
|
4 |
import time
|
5 |
from datetime import datetime
|
6 |
from math import pi
|
7 |
-
import sys
|
8 |
|
9 |
import gradio as gr
|
10 |
import numpy as np
|
@@ -12,12 +17,10 @@ import torch
|
|
12 |
import trimesh
|
13 |
from PIL import Image
|
14 |
|
15 |
-
|
16 |
-
sys.path.append("unik3d/")
|
17 |
|
18 |
from unik3d.models import UniK3D
|
19 |
from unik3d.utils.camera import OPENCV, Fisheye624, Pinhole, Spherical
|
20 |
-
from unik3d.utils.visualization import colorize
|
21 |
|
22 |
|
23 |
def predictions_to_glb(
|
@@ -86,7 +89,7 @@ def instantiate_camera(camera_name, params, device):
|
|
86 |
return eval(camera_name)(params=torch.tensor(params).float()).to(device)
|
87 |
|
88 |
|
89 |
-
def run_model(target_dir, model_name, camera_name, params):
|
90 |
|
91 |
print("Instantiating model and camera...")
|
92 |
model = instantiate_model(model_name)
|
@@ -102,6 +105,7 @@ def run_model(target_dir, model_name, camera_name, params):
|
|
102 |
|
103 |
# Perform inference with the model.
|
104 |
print("Running inference...")
|
|
|
105 |
outputs = model.infer(image_tensor, camera=camera, normalize=True)
|
106 |
outputs["image"] = image_tensor
|
107 |
|
@@ -127,8 +131,8 @@ def gradio_demo(
|
|
127 |
hfov,
|
128 |
mask_black_bg,
|
129 |
mask_far_points,
|
|
|
130 |
):
|
131 |
-
print(target_dir)
|
132 |
if not os.path.isdir(target_dir) or target_dir == "None":
|
133 |
return None, "No valid target directory found. Please upload first.", None
|
134 |
|
@@ -138,7 +142,7 @@ def gradio_demo(
|
|
138 |
print("Running run_model...")
|
139 |
params = [fx, fy, cx, cy, k1, k2, k3, k4, k5, k6, t1, t2, hfov]
|
140 |
with torch.no_grad():
|
141 |
-
outputs = run_model(target_dir, model_name, camera_name, params)
|
142 |
|
143 |
# Save predictions
|
144 |
points = outputs["points"].squeeze().permute(1, 2, 0).cpu().numpy()
|
@@ -399,8 +403,9 @@ if __name__ == "__main__":
|
|
399 |
<li><strong>Upload Your Image:</strong> Use the "Upload Images" panel to provide your input.</li>
|
400 |
<li><strong>Run:</strong> Click the "Run UniK3D" button to start the 3D estimation process.</li>
|
401 |
<li><strong>Visualize:</strong> The 3D reconstruction will appear in the viewer on the right. You can rotate, pan, and zoom to explore the model, and download the GLB file.</li>
|
|
|
402 |
</ol>
|
403 |
-
<p><strong style="color: #ff7e26;">Please note:</strong> <span style="color: #ff7e26; font-weight: bold;">Our model runs on CPU on HuggingFace Space. Actual inference is less than 100ms second per image on consumer-level GPUs. Web-based 3D pointcloud visualization may be slow due to Gradio's rendering. For faster visualization, use a local machine to run our demo from our <a href="https://github.com/lpiccinelli-eth/UniK3D">GitHub repository</a>. </span></p>
|
404 |
</div>
|
405 |
"""
|
406 |
)
|
@@ -409,7 +414,7 @@ if __name__ == "__main__":
|
|
409 |
|
410 |
with gr.Row():
|
411 |
with gr.Column():
|
412 |
-
|
413 |
choices=[
|
414 |
"Predicted",
|
415 |
"Pinhole",
|
@@ -419,13 +424,14 @@ if __name__ == "__main__":
|
|
419 |
],
|
420 |
label="Input Camera",
|
421 |
)
|
422 |
-
|
423 |
choices=["Large", "Base", "Small"], label="Utilized Model"
|
424 |
)
|
425 |
mask_black_bg = gr.Checkbox(
|
426 |
label="Filter Black Background", value=False
|
427 |
)
|
428 |
mask_far_points = gr.Checkbox(label="Filter Far Points", value=False)
|
|
|
429 |
|
430 |
with gr.Column():
|
431 |
fx = gr.Number(label="Focal length x", value=500.0, visible=False)
|
@@ -498,6 +504,7 @@ if __name__ == "__main__":
|
|
498 |
0.0,
|
499 |
True,
|
500 |
False,
|
|
|
501 |
],
|
502 |
[
|
503 |
"assets/demo/naruto.jpg",
|
@@ -518,9 +525,10 @@ if __name__ == "__main__":
|
|
518 |
0.0,
|
519 |
False,
|
520 |
False,
|
|
|
521 |
],
|
522 |
[
|
523 |
-
"assets/demo/bears.
|
524 |
"Large",
|
525 |
"Predicted",
|
526 |
0.0,
|
@@ -538,6 +546,7 @@ if __name__ == "__main__":
|
|
538 |
0.0,
|
539 |
True,
|
540 |
False,
|
|
|
541 |
],
|
542 |
[
|
543 |
"assets/demo/berzirk.jpg",
|
@@ -558,6 +567,7 @@ if __name__ == "__main__":
|
|
558 |
0.0,
|
559 |
True,
|
560 |
False,
|
|
|
561 |
],
|
562 |
[
|
563 |
"assets/demo/luke.webp",
|
@@ -578,6 +588,7 @@ if __name__ == "__main__":
|
|
578 |
0.0,
|
579 |
False,
|
580 |
False,
|
|
|
581 |
],
|
582 |
[
|
583 |
"assets/demo/equirectangular.jpg",
|
@@ -598,6 +609,7 @@ if __name__ == "__main__":
|
|
598 |
360.0,
|
599 |
False,
|
600 |
False,
|
|
|
601 |
],
|
602 |
[
|
603 |
"assets/demo/venice.jpg",
|
@@ -618,6 +630,7 @@ if __name__ == "__main__":
|
|
618 |
360.0,
|
619 |
False,
|
620 |
True,
|
|
|
621 |
],
|
622 |
[
|
623 |
"assets/demo/dl3dv.png",
|
@@ -638,9 +651,10 @@ if __name__ == "__main__":
|
|
638 |
0.0,
|
639 |
False,
|
640 |
False,
|
|
|
641 |
],
|
642 |
[
|
643 |
-
"assets/demo/scannet.
|
644 |
"Large",
|
645 |
"Fisheye624",
|
646 |
791.90869140625,
|
@@ -658,6 +672,7 @@ if __name__ == "__main__":
|
|
658 |
0.0,
|
659 |
False,
|
660 |
False,
|
|
|
661 |
],
|
662 |
]
|
663 |
|
@@ -680,6 +695,7 @@ if __name__ == "__main__":
|
|
680 |
hfov,
|
681 |
mask_black_bg,
|
682 |
mask_far_points,
|
|
|
683 |
):
|
684 |
target_dir, image_path = handle_uploads(input_image)
|
685 |
glbfile, log_msg, prediction_save_path = gradio_demo(
|
@@ -701,6 +717,7 @@ if __name__ == "__main__":
|
|
701 |
hfov,
|
702 |
mask_black_bg,
|
703 |
mask_far_points,
|
|
|
704 |
)
|
705 |
return (
|
706 |
glbfile,
|
@@ -716,8 +733,8 @@ if __name__ == "__main__":
|
|
716 |
examples=examples,
|
717 |
inputs=[
|
718 |
input_image,
|
719 |
-
|
720 |
-
|
721 |
fx,
|
722 |
fy,
|
723 |
cx,
|
@@ -733,6 +750,7 @@ if __name__ == "__main__":
|
|
733 |
hfov,
|
734 |
mask_black_bg,
|
735 |
mask_far_points,
|
|
|
736 |
],
|
737 |
outputs=[reconstruction_output, log_output, reconstruction_npy],
|
738 |
fn=example_pipeline,
|
@@ -746,8 +764,8 @@ if __name__ == "__main__":
|
|
746 |
fn=gradio_demo,
|
747 |
inputs=[
|
748 |
target_dir_output,
|
749 |
-
|
750 |
-
|
751 |
fx,
|
752 |
fy,
|
753 |
cx,
|
@@ -763,6 +781,7 @@ if __name__ == "__main__":
|
|
763 |
hfov,
|
764 |
mask_black_bg,
|
765 |
mask_far_points,
|
|
|
766 |
],
|
767 |
outputs=[reconstruction_output, log_output, reconstruction_npy],
|
768 |
).then(
|
@@ -788,13 +807,10 @@ if __name__ == "__main__":
|
|
788 |
)
|
789 |
|
790 |
# Dynamically update intrinsic parameter visibility when camera selection changes.
|
791 |
-
|
792 |
fn=update_parameters,
|
793 |
-
inputs=
|
794 |
outputs=[fx, fy, cx, cy, k1, k2, k3, k4, k5, k6, t1, t2, hfov],
|
795 |
)
|
796 |
|
797 |
-
|
798 |
-
demo.launch(
|
799 |
-
show_error=True,
|
800 |
-
)
|
|
|
1 |
+
"""
|
2 |
+
Author: Luigi Piccinelli
|
3 |
+
Licensed under the CC-BY NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/)
|
4 |
+
"""
|
5 |
+
|
6 |
import gc
|
7 |
import os
|
8 |
import shutil
|
9 |
+
import sys
|
10 |
import time
|
11 |
from datetime import datetime
|
12 |
from math import pi
|
|
|
13 |
|
14 |
import gradio as gr
|
15 |
import numpy as np
|
|
|
17 |
import trimesh
|
18 |
from PIL import Image
|
19 |
|
20 |
+
sys.path.append("./unik3d/")
|
|
|
21 |
|
22 |
from unik3d.models import UniK3D
|
23 |
from unik3d.utils.camera import OPENCV, Fisheye624, Pinhole, Spherical
|
|
|
24 |
|
25 |
|
26 |
def predictions_to_glb(
|
|
|
89 |
return eval(camera_name)(params=torch.tensor(params).float()).to(device)
|
90 |
|
91 |
|
92 |
+
def run_model(target_dir, model_name, camera_name, params, efficiency):
|
93 |
|
94 |
print("Instantiating model and camera...")
|
95 |
model = instantiate_model(model_name)
|
|
|
105 |
|
106 |
# Perform inference with the model.
|
107 |
print("Running inference...")
|
108 |
+
model.resolution_level = min(efficiency, 9.0)
|
109 |
outputs = model.infer(image_tensor, camera=camera, normalize=True)
|
110 |
outputs["image"] = image_tensor
|
111 |
|
|
|
131 |
hfov,
|
132 |
mask_black_bg,
|
133 |
mask_far_points,
|
134 |
+
efficiency
|
135 |
):
|
|
|
136 |
if not os.path.isdir(target_dir) or target_dir == "None":
|
137 |
return None, "No valid target directory found. Please upload first.", None
|
138 |
|
|
|
142 |
print("Running run_model...")
|
143 |
params = [fx, fy, cx, cy, k1, k2, k3, k4, k5, k6, t1, t2, hfov]
|
144 |
with torch.no_grad():
|
145 |
+
outputs = run_model(target_dir, model_name, camera_name, params, efficiency)
|
146 |
|
147 |
# Save predictions
|
148 |
points = outputs["points"].squeeze().permute(1, 2, 0).cpu().numpy()
|
|
|
403 |
<li><strong>Upload Your Image:</strong> Use the "Upload Images" panel to provide your input.</li>
|
404 |
<li><strong>Run:</strong> Click the "Run UniK3D" button to start the 3D estimation process.</li>
|
405 |
<li><strong>Visualize:</strong> The 3D reconstruction will appear in the viewer on the right. You can rotate, pan, and zoom to explore the model, and download the GLB file.</li>
|
406 |
+
<li><strong>Downstream:</strong> The 3D output can be used as reconstruction or for monocular camera calibration.</li>
|
407 |
</ol>
|
408 |
+
<p><strong style="color: #ff7e26;">Please note:</strong> <span style="color: #ff7e26; font-weight: bold;">Our model runs on CPU on HuggingFace Space. Actual inference is less than 100ms second per image on consumer-level GPUs, on Spaces will take between 20s and 90s, depending on the "Speed-Resoltion Tradeoff" chosen. Web-based 3D pointcloud visualization may be slow due to Gradio's rendering. For faster visualization, use a local machine to run our demo from our <a href="https://github.com/lpiccinelli-eth/UniK3D">GitHub repository</a>. </span></p>
|
409 |
</div>
|
410 |
"""
|
411 |
)
|
|
|
414 |
|
415 |
with gr.Row():
|
416 |
with gr.Column():
|
417 |
+
camera_model = gr.Dropdown(
|
418 |
choices=[
|
419 |
"Predicted",
|
420 |
"Pinhole",
|
|
|
424 |
],
|
425 |
label="Input Camera",
|
426 |
)
|
427 |
+
model_size = gr.Dropdown(
|
428 |
choices=["Large", "Base", "Small"], label="Utilized Model"
|
429 |
)
|
430 |
mask_black_bg = gr.Checkbox(
|
431 |
label="Filter Black Background", value=False
|
432 |
)
|
433 |
mask_far_points = gr.Checkbox(label="Filter Far Points", value=False)
|
434 |
+
efficiency = gr.Slider(0, 10, step=1, value=10, label="Speed-Resolution Tradeoff", info="Lower is faster and Higher is more detailed")
|
435 |
|
436 |
with gr.Column():
|
437 |
fx = gr.Number(label="Focal length x", value=500.0, visible=False)
|
|
|
504 |
0.0,
|
505 |
True,
|
506 |
False,
|
507 |
+
10.0,
|
508 |
],
|
509 |
[
|
510 |
"assets/demo/naruto.jpg",
|
|
|
525 |
0.0,
|
526 |
False,
|
527 |
False,
|
528 |
+
10.0,
|
529 |
],
|
530 |
[
|
531 |
+
"assets/demo/bears.png",
|
532 |
"Large",
|
533 |
"Predicted",
|
534 |
0.0,
|
|
|
546 |
0.0,
|
547 |
True,
|
548 |
False,
|
549 |
+
10.0,
|
550 |
],
|
551 |
[
|
552 |
"assets/demo/berzirk.jpg",
|
|
|
567 |
0.0,
|
568 |
True,
|
569 |
False,
|
570 |
+
10.0,
|
571 |
],
|
572 |
[
|
573 |
"assets/demo/luke.webp",
|
|
|
588 |
0.0,
|
589 |
False,
|
590 |
False,
|
591 |
+
10.0,
|
592 |
],
|
593 |
[
|
594 |
"assets/demo/equirectangular.jpg",
|
|
|
609 |
360.0,
|
610 |
False,
|
611 |
False,
|
612 |
+
10.0,
|
613 |
],
|
614 |
[
|
615 |
"assets/demo/venice.jpg",
|
|
|
630 |
360.0,
|
631 |
False,
|
632 |
True,
|
633 |
+
10.0,
|
634 |
],
|
635 |
[
|
636 |
"assets/demo/dl3dv.png",
|
|
|
651 |
0.0,
|
652 |
False,
|
653 |
False,
|
654 |
+
10.0,
|
655 |
],
|
656 |
[
|
657 |
+
"assets/demo/scannet.png",
|
658 |
"Large",
|
659 |
"Fisheye624",
|
660 |
791.90869140625,
|
|
|
672 |
0.0,
|
673 |
False,
|
674 |
False,
|
675 |
+
10.0,
|
676 |
],
|
677 |
]
|
678 |
|
|
|
695 |
hfov,
|
696 |
mask_black_bg,
|
697 |
mask_far_points,
|
698 |
+
efficiency
|
699 |
):
|
700 |
target_dir, image_path = handle_uploads(input_image)
|
701 |
glbfile, log_msg, prediction_save_path = gradio_demo(
|
|
|
717 |
hfov,
|
718 |
mask_black_bg,
|
719 |
mask_far_points,
|
720 |
+
efficiency
|
721 |
)
|
722 |
return (
|
723 |
glbfile,
|
|
|
733 |
examples=examples,
|
734 |
inputs=[
|
735 |
input_image,
|
736 |
+
model_size,
|
737 |
+
camera_model,
|
738 |
fx,
|
739 |
fy,
|
740 |
cx,
|
|
|
750 |
hfov,
|
751 |
mask_black_bg,
|
752 |
mask_far_points,
|
753 |
+
efficiency
|
754 |
],
|
755 |
outputs=[reconstruction_output, log_output, reconstruction_npy],
|
756 |
fn=example_pipeline,
|
|
|
764 |
fn=gradio_demo,
|
765 |
inputs=[
|
766 |
target_dir_output,
|
767 |
+
model_size,
|
768 |
+
camera_model,
|
769 |
fx,
|
770 |
fy,
|
771 |
cx,
|
|
|
781 |
hfov,
|
782 |
mask_black_bg,
|
783 |
mask_far_points,
|
784 |
+
efficiency
|
785 |
],
|
786 |
outputs=[reconstruction_output, log_output, reconstruction_npy],
|
787 |
).then(
|
|
|
807 |
)
|
808 |
|
809 |
# Dynamically update intrinsic parameter visibility when camera selection changes.
|
810 |
+
camera_model.change(
|
811 |
fn=update_parameters,
|
812 |
+
inputs=camera_model,
|
813 |
outputs=[fx, fy, cx, cy, k1, k2, k3, k4, k5, k6, t1, t2, hfov],
|
814 |
)
|
815 |
|
816 |
+
demo.queue(max_size=20).launch(show_error=True, share=True, ssr_mode=False)
|
|
|
|
|
|
gradio_demo.py
CHANGED
@@ -1,3 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gc
|
2 |
import os
|
3 |
import shutil
|
@@ -13,7 +18,6 @@ from PIL import Image
|
|
13 |
|
14 |
from unik3d.models import UniK3D
|
15 |
from unik3d.utils.camera import OPENCV, Fisheye624, Pinhole, Spherical
|
16 |
-
from unik3d.utils.visualization import colorize
|
17 |
|
18 |
|
19 |
def predictions_to_glb(
|
@@ -82,7 +86,7 @@ def instantiate_camera(camera_name, params, device):
|
|
82 |
return eval(camera_name)(params=torch.tensor(params).float()).to(device)
|
83 |
|
84 |
|
85 |
-
def run_model(target_dir, model_name, camera_name, params):
|
86 |
|
87 |
print("Instantiating model and camera...")
|
88 |
model = instantiate_model(model_name)
|
@@ -98,6 +102,7 @@ def run_model(target_dir, model_name, camera_name, params):
|
|
98 |
|
99 |
# Perform inference with the model.
|
100 |
print("Running inference...")
|
|
|
101 |
outputs = model.infer(image_tensor, camera=camera, normalize=True)
|
102 |
outputs["image"] = image_tensor
|
103 |
|
@@ -123,8 +128,8 @@ def gradio_demo(
|
|
123 |
hfov,
|
124 |
mask_black_bg,
|
125 |
mask_far_points,
|
|
|
126 |
):
|
127 |
-
print(target_dir)
|
128 |
if not os.path.isdir(target_dir) or target_dir == "None":
|
129 |
return None, "No valid target directory found. Please upload first.", None
|
130 |
|
@@ -134,7 +139,7 @@ def gradio_demo(
|
|
134 |
print("Running run_model...")
|
135 |
params = [fx, fy, cx, cy, k1, k2, k3, k4, k5, k6, t1, t2, hfov]
|
136 |
with torch.no_grad():
|
137 |
-
outputs = run_model(target_dir, model_name, camera_name, params)
|
138 |
|
139 |
# Save predictions
|
140 |
points = outputs["points"].squeeze().permute(1, 2, 0).cpu().numpy()
|
@@ -395,8 +400,9 @@ if __name__ == "__main__":
|
|
395 |
<li><strong>Upload Your Image:</strong> Use the "Upload Images" panel to provide your input.</li>
|
396 |
<li><strong>Run:</strong> Click the "Run UniK3D" button to start the 3D estimation process.</li>
|
397 |
<li><strong>Visualize:</strong> The 3D reconstruction will appear in the viewer on the right. You can rotate, pan, and zoom to explore the model, and download the GLB file.</li>
|
|
|
398 |
</ol>
|
399 |
-
<p><strong style="color: #ff7e26;">Please note:</strong> <span style="color: #ff7e26; font-weight: bold;">Our model runs on CPU on HuggingFace Space. Actual inference is less than 100ms second per image on consumer-level GPUs. Web-based 3D pointcloud visualization may be slow due to Gradio's rendering. For faster visualization, use a local machine to run our demo from our <a href="https://github.com/lpiccinelli-eth/UniK3D">GitHub repository</a>. </span></p>
|
400 |
</div>
|
401 |
"""
|
402 |
)
|
@@ -405,7 +411,7 @@ if __name__ == "__main__":
|
|
405 |
|
406 |
with gr.Row():
|
407 |
with gr.Column():
|
408 |
-
|
409 |
choices=[
|
410 |
"Predicted",
|
411 |
"Pinhole",
|
@@ -415,13 +421,14 @@ if __name__ == "__main__":
|
|
415 |
],
|
416 |
label="Input Camera",
|
417 |
)
|
418 |
-
|
419 |
choices=["Large", "Base", "Small"], label="Utilized Model"
|
420 |
)
|
421 |
mask_black_bg = gr.Checkbox(
|
422 |
label="Filter Black Background", value=False
|
423 |
)
|
424 |
mask_far_points = gr.Checkbox(label="Filter Far Points", value=False)
|
|
|
425 |
|
426 |
with gr.Column():
|
427 |
fx = gr.Number(label="Focal length x", value=500.0, visible=False)
|
@@ -494,6 +501,7 @@ if __name__ == "__main__":
|
|
494 |
0.0,
|
495 |
True,
|
496 |
False,
|
|
|
497 |
],
|
498 |
[
|
499 |
"assets/demo/naruto.jpg",
|
@@ -514,6 +522,7 @@ if __name__ == "__main__":
|
|
514 |
0.0,
|
515 |
False,
|
516 |
False,
|
|
|
517 |
],
|
518 |
[
|
519 |
"assets/demo/bears.png",
|
@@ -534,6 +543,7 @@ if __name__ == "__main__":
|
|
534 |
0.0,
|
535 |
True,
|
536 |
False,
|
|
|
537 |
],
|
538 |
[
|
539 |
"assets/demo/berzirk.jpg",
|
@@ -554,6 +564,7 @@ if __name__ == "__main__":
|
|
554 |
0.0,
|
555 |
True,
|
556 |
False,
|
|
|
557 |
],
|
558 |
[
|
559 |
"assets/demo/luke.webp",
|
@@ -574,6 +585,7 @@ if __name__ == "__main__":
|
|
574 |
0.0,
|
575 |
False,
|
576 |
False,
|
|
|
577 |
],
|
578 |
[
|
579 |
"assets/demo/equirectangular.jpg",
|
@@ -594,6 +606,7 @@ if __name__ == "__main__":
|
|
594 |
360.0,
|
595 |
False,
|
596 |
False,
|
|
|
597 |
],
|
598 |
[
|
599 |
"assets/demo/venice.jpg",
|
@@ -614,6 +627,7 @@ if __name__ == "__main__":
|
|
614 |
360.0,
|
615 |
False,
|
616 |
True,
|
|
|
617 |
],
|
618 |
[
|
619 |
"assets/demo/dl3dv.png",
|
@@ -634,6 +648,7 @@ if __name__ == "__main__":
|
|
634 |
0.0,
|
635 |
False,
|
636 |
False,
|
|
|
637 |
],
|
638 |
[
|
639 |
"assets/demo/scannet.png",
|
@@ -654,6 +669,7 @@ if __name__ == "__main__":
|
|
654 |
0.0,
|
655 |
False,
|
656 |
False,
|
|
|
657 |
],
|
658 |
]
|
659 |
|
@@ -676,6 +692,7 @@ if __name__ == "__main__":
|
|
676 |
hfov,
|
677 |
mask_black_bg,
|
678 |
mask_far_points,
|
|
|
679 |
):
|
680 |
target_dir, image_path = handle_uploads(input_image)
|
681 |
glbfile, log_msg, prediction_save_path = gradio_demo(
|
@@ -697,6 +714,7 @@ if __name__ == "__main__":
|
|
697 |
hfov,
|
698 |
mask_black_bg,
|
699 |
mask_far_points,
|
|
|
700 |
)
|
701 |
return (
|
702 |
glbfile,
|
@@ -712,8 +730,8 @@ if __name__ == "__main__":
|
|
712 |
examples=examples,
|
713 |
inputs=[
|
714 |
input_image,
|
715 |
-
|
716 |
-
|
717 |
fx,
|
718 |
fy,
|
719 |
cx,
|
@@ -729,6 +747,7 @@ if __name__ == "__main__":
|
|
729 |
hfov,
|
730 |
mask_black_bg,
|
731 |
mask_far_points,
|
|
|
732 |
],
|
733 |
outputs=[reconstruction_output, log_output, reconstruction_npy],
|
734 |
fn=example_pipeline,
|
@@ -742,8 +761,8 @@ if __name__ == "__main__":
|
|
742 |
fn=gradio_demo,
|
743 |
inputs=[
|
744 |
target_dir_output,
|
745 |
-
|
746 |
-
|
747 |
fx,
|
748 |
fy,
|
749 |
cx,
|
@@ -759,6 +778,7 @@ if __name__ == "__main__":
|
|
759 |
hfov,
|
760 |
mask_black_bg,
|
761 |
mask_far_points,
|
|
|
762 |
],
|
763 |
outputs=[reconstruction_output, log_output, reconstruction_npy],
|
764 |
).then(
|
@@ -784,13 +804,10 @@ if __name__ == "__main__":
|
|
784 |
)
|
785 |
|
786 |
# Dynamically update intrinsic parameter visibility when camera selection changes.
|
787 |
-
|
788 |
fn=update_parameters,
|
789 |
-
inputs=
|
790 |
outputs=[fx, fy, cx, cy, k1, k2, k3, k4, k5, k6, t1, t2, hfov],
|
791 |
)
|
792 |
|
793 |
-
|
794 |
-
demo.launch(
|
795 |
-
show_error=True,
|
796 |
-
)
|
|
|
1 |
+
"""
|
2 |
+
Author: Luigi Piccinelli
|
3 |
+
Licensed under the CC-BY NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/)
|
4 |
+
"""
|
5 |
+
|
6 |
import gc
|
7 |
import os
|
8 |
import shutil
|
|
|
18 |
|
19 |
from unik3d.models import UniK3D
|
20 |
from unik3d.utils.camera import OPENCV, Fisheye624, Pinhole, Spherical
|
|
|
21 |
|
22 |
|
23 |
def predictions_to_glb(
|
|
|
86 |
return eval(camera_name)(params=torch.tensor(params).float()).to(device)
|
87 |
|
88 |
|
89 |
+
def run_model(target_dir, model_name, camera_name, params, efficiency):
|
90 |
|
91 |
print("Instantiating model and camera...")
|
92 |
model = instantiate_model(model_name)
|
|
|
102 |
|
103 |
# Perform inference with the model.
|
104 |
print("Running inference...")
|
105 |
+
model.resolution_level = min(efficiency, 9.0)
|
106 |
outputs = model.infer(image_tensor, camera=camera, normalize=True)
|
107 |
outputs["image"] = image_tensor
|
108 |
|
|
|
128 |
hfov,
|
129 |
mask_black_bg,
|
130 |
mask_far_points,
|
131 |
+
efficiency
|
132 |
):
|
|
|
133 |
if not os.path.isdir(target_dir) or target_dir == "None":
|
134 |
return None, "No valid target directory found. Please upload first.", None
|
135 |
|
|
|
139 |
print("Running run_model...")
|
140 |
params = [fx, fy, cx, cy, k1, k2, k3, k4, k5, k6, t1, t2, hfov]
|
141 |
with torch.no_grad():
|
142 |
+
outputs = run_model(target_dir, model_name, camera_name, params, efficiency)
|
143 |
|
144 |
# Save predictions
|
145 |
points = outputs["points"].squeeze().permute(1, 2, 0).cpu().numpy()
|
|
|
400 |
<li><strong>Upload Your Image:</strong> Use the "Upload Images" panel to provide your input.</li>
|
401 |
<li><strong>Run:</strong> Click the "Run UniK3D" button to start the 3D estimation process.</li>
|
402 |
<li><strong>Visualize:</strong> The 3D reconstruction will appear in the viewer on the right. You can rotate, pan, and zoom to explore the model, and download the GLB file.</li>
|
403 |
+
<li><strong>Downstream:</strong> The 3D output can be used as reconstruction or for monocular camera calibration.</li>
|
404 |
</ol>
|
405 |
+
<p><strong style="color: #ff7e26;">Please note:</strong> <span style="color: #ff7e26; font-weight: bold;">Our model runs on CPU on HuggingFace Space. Actual inference is less than 100ms second per image on consumer-level GPUs, on Spaces will take between 20s and 90s, depending on the "Speed-Resoltion Tradeoff" chosen. Web-based 3D pointcloud visualization may be slow due to Gradio's rendering. For faster visualization, use a local machine to run our demo from our <a href="https://github.com/lpiccinelli-eth/UniK3D">GitHub repository</a>. </span></p>
|
406 |
</div>
|
407 |
"""
|
408 |
)
|
|
|
411 |
|
412 |
with gr.Row():
|
413 |
with gr.Column():
|
414 |
+
camera_model = gr.Dropdown(
|
415 |
choices=[
|
416 |
"Predicted",
|
417 |
"Pinhole",
|
|
|
421 |
],
|
422 |
label="Input Camera",
|
423 |
)
|
424 |
+
model_size = gr.Dropdown(
|
425 |
choices=["Large", "Base", "Small"], label="Utilized Model"
|
426 |
)
|
427 |
mask_black_bg = gr.Checkbox(
|
428 |
label="Filter Black Background", value=False
|
429 |
)
|
430 |
mask_far_points = gr.Checkbox(label="Filter Far Points", value=False)
|
431 |
+
efficiency = gr.Slider(0, 10, step=1, value=10, label="Speed-Resolution Tradeoff", info="Lower is faster and Higher is more detailed")
|
432 |
|
433 |
with gr.Column():
|
434 |
fx = gr.Number(label="Focal length x", value=500.0, visible=False)
|
|
|
501 |
0.0,
|
502 |
True,
|
503 |
False,
|
504 |
+
10.0,
|
505 |
],
|
506 |
[
|
507 |
"assets/demo/naruto.jpg",
|
|
|
522 |
0.0,
|
523 |
False,
|
524 |
False,
|
525 |
+
10.0,
|
526 |
],
|
527 |
[
|
528 |
"assets/demo/bears.png",
|
|
|
543 |
0.0,
|
544 |
True,
|
545 |
False,
|
546 |
+
10.0,
|
547 |
],
|
548 |
[
|
549 |
"assets/demo/berzirk.jpg",
|
|
|
564 |
0.0,
|
565 |
True,
|
566 |
False,
|
567 |
+
10.0,
|
568 |
],
|
569 |
[
|
570 |
"assets/demo/luke.webp",
|
|
|
585 |
0.0,
|
586 |
False,
|
587 |
False,
|
588 |
+
10.0,
|
589 |
],
|
590 |
[
|
591 |
"assets/demo/equirectangular.jpg",
|
|
|
606 |
360.0,
|
607 |
False,
|
608 |
False,
|
609 |
+
10.0,
|
610 |
],
|
611 |
[
|
612 |
"assets/demo/venice.jpg",
|
|
|
627 |
360.0,
|
628 |
False,
|
629 |
True,
|
630 |
+
10.0,
|
631 |
],
|
632 |
[
|
633 |
"assets/demo/dl3dv.png",
|
|
|
648 |
0.0,
|
649 |
False,
|
650 |
False,
|
651 |
+
10.0,
|
652 |
],
|
653 |
[
|
654 |
"assets/demo/scannet.png",
|
|
|
669 |
0.0,
|
670 |
False,
|
671 |
False,
|
672 |
+
10.0,
|
673 |
],
|
674 |
]
|
675 |
|
|
|
692 |
hfov,
|
693 |
mask_black_bg,
|
694 |
mask_far_points,
|
695 |
+
efficiency
|
696 |
):
|
697 |
target_dir, image_path = handle_uploads(input_image)
|
698 |
glbfile, log_msg, prediction_save_path = gradio_demo(
|
|
|
714 |
hfov,
|
715 |
mask_black_bg,
|
716 |
mask_far_points,
|
717 |
+
efficiency
|
718 |
)
|
719 |
return (
|
720 |
glbfile,
|
|
|
730 |
examples=examples,
|
731 |
inputs=[
|
732 |
input_image,
|
733 |
+
model_size,
|
734 |
+
camera_model,
|
735 |
fx,
|
736 |
fy,
|
737 |
cx,
|
|
|
747 |
hfov,
|
748 |
mask_black_bg,
|
749 |
mask_far_points,
|
750 |
+
efficiency
|
751 |
],
|
752 |
outputs=[reconstruction_output, log_output, reconstruction_npy],
|
753 |
fn=example_pipeline,
|
|
|
761 |
fn=gradio_demo,
|
762 |
inputs=[
|
763 |
target_dir_output,
|
764 |
+
model_size,
|
765 |
+
camera_model,
|
766 |
fx,
|
767 |
fy,
|
768 |
cx,
|
|
|
778 |
hfov,
|
779 |
mask_black_bg,
|
780 |
mask_far_points,
|
781 |
+
efficiency
|
782 |
],
|
783 |
outputs=[reconstruction_output, log_output, reconstruction_npy],
|
784 |
).then(
|
|
|
804 |
)
|
805 |
|
806 |
# Dynamically update intrinsic parameter visibility when camera selection changes.
|
807 |
+
camera_model.change(
|
808 |
fn=update_parameters,
|
809 |
+
inputs=camera_model,
|
810 |
outputs=[fx, fy, cx, cy, k1, k2, k3, k4, k5, k6, t1, t2, hfov],
|
811 |
)
|
812 |
|
813 |
+
demo.queue(max_size=20).launch(show_error=True, share=True, ssr_mode=False)
|
|
|
|
|
|
unik3d/models/unik3d.py
CHANGED
@@ -22,6 +22,7 @@ from unik3d.utils.distributed import is_main_process
|
|
22 |
from unik3d.utils.misc import get_params, last_stack, match_gt
|
23 |
|
24 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
25 |
|
26 |
|
27 |
def orthonormal_init(num_tokens, dims):
|
@@ -146,7 +147,7 @@ class UniK3D(
|
|
146 |
)
|
147 |
|
148 |
# compute loss!
|
149 |
-
inputs["
|
150 |
inputs["points"] = pts_gt
|
151 |
inputs["depth_mask"] = mask
|
152 |
losses = self.compute_losses(outputs, inputs, image_metas)
|
@@ -241,8 +242,8 @@ class UniK3D(
|
|
241 |
).reshape(B)
|
242 |
loss = self.losses["depth"]
|
243 |
depth_losses = loss(
|
244 |
-
outputs["
|
245 |
-
target=inputs["
|
246 |
mask=inputs["depth_mask"].clone(),
|
247 |
si=si,
|
248 |
)
|
@@ -264,6 +265,7 @@ class UniK3D(
|
|
264 |
target_pred=outputs["depth"],
|
265 |
mask=inputs["depth_mask"].clone(),
|
266 |
)
|
|
|
267 |
losses["opt"][loss.name + "_conf"] = loss.weight * conf_losses.mean()
|
268 |
losses_to_be_computed.remove("confidence")
|
269 |
|
@@ -274,7 +276,7 @@ class UniK3D(
|
|
274 |
return losses
|
275 |
|
276 |
@torch.no_grad()
|
277 |
-
@torch.autocast(device_type=DEVICE, enabled=
|
278 |
def infer(
|
279 |
self,
|
280 |
rgb: torch.Tensor,
|
|
|
22 |
from unik3d.utils.misc import get_params, last_stack, match_gt
|
23 |
|
24 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
25 |
+
ENABLED = torch.cuda.is_available()
|
26 |
|
27 |
|
28 |
def orthonormal_init(num_tokens, dims):
|
|
|
147 |
)
|
148 |
|
149 |
# compute loss!
|
150 |
+
inputs["distance"] = torch.norm(pts_gt, dim=1, keepdim=True)
|
151 |
inputs["points"] = pts_gt
|
152 |
inputs["depth_mask"] = mask
|
153 |
losses = self.compute_losses(outputs, inputs, image_metas)
|
|
|
242 |
).reshape(B)
|
243 |
loss = self.losses["depth"]
|
244 |
depth_losses = loss(
|
245 |
+
outputs["distance"],
|
246 |
+
target=inputs["distance"],
|
247 |
mask=inputs["depth_mask"].clone(),
|
248 |
si=si,
|
249 |
)
|
|
|
265 |
target_pred=outputs["depth"],
|
266 |
mask=inputs["depth_mask"].clone(),
|
267 |
)
|
268 |
+
print(conf_losses, camera_losses, depth_losses)
|
269 |
losses["opt"][loss.name + "_conf"] = loss.weight * conf_losses.mean()
|
270 |
losses_to_be_computed.remove("confidence")
|
271 |
|
|
|
276 |
return losses
|
277 |
|
278 |
@torch.no_grad()
|
279 |
+
@torch.autocast(device_type=DEVICE, enabled=ENABLED, dtype=torch.float16)
|
280 |
def infer(
|
281 |
self,
|
282 |
rgb: torch.Tensor,
|