import argparse import json import os import numpy as np import torch import torch.nn as nn from PIL import Image from unik3d.models import UniK3D from unik3d.utils.camera import (MEI, OPENCV, BatchCamera, Fisheye624, Pinhole, Spherical) from unik3d.utils.visualization import colorize, save_file_ply SAVE = False BASE_PATH = os.path.join( os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "assets", "demo" ) def infer(model, rgb_path, camera_path, rays=None): rgb = np.array(Image.open(rgb_path)) rgb_torch = torch.from_numpy(rgb).permute(2, 0, 1) camera = None if camera_path is not None: with open(camera_path, "r") as f: camera_dict = json.load(f) params = torch.tensor(camera_dict["params"]) name = camera_dict["name"] assert name in ["Fisheye624", "Spherical", "OPENCV", "Pinhole", "MEI"] camera = eval(name)(params=params) outputs = model.infer(rgb=rgb_torch, camera=camera, normalize=True, rays=rays) return rgb_torch, outputs def infer_equirectangular(model, rgb_path): rgb = np.array(Image.open(rgb_path)) rgb_torch = torch.from_numpy(rgb).permute(2, 0, 1) # assuming full equirectangular image horizontally H, W = rgb.shape[:2] hfov_half = np.pi vfov_half = np.pi * H / W assert vfov_half <= np.pi / 2 params = [W, H, hfov_half, vfov_half] camera = Spherical(params=torch.tensor([1.0] * 4 + params)) outputs = model.infer(rgb=rgb_torch, camera=camera, normalize=True) return rgb_torch, outputs def save(rgb, outputs, name, base_path, save_pointcloud=False): depth = outputs["depth"] rays = outputs["rays"] points = outputs["points"] depth = depth.cpu().numpy() rays = ((rays + 1) * 127.5).clip(0, 255) Image.fromarray(colorize(depth.squeeze())).save( os.path.join(base_path, f"{name}_depth.png") ) Image.fromarray(rgb.squeeze().permute(1, 2, 0).cpu().numpy()).save( os.path.join(base_path, f"{name}_rgb.png") ) Image.fromarray(rays.squeeze().permute(1, 2, 0).byte().cpu().numpy()).save( os.path.join(base_path, f"{name}_rays.png") ) if save_pointcloud: predictions_3d = points.permute(0, 2, 3, 1).reshape(-1, 3).cpu().numpy() rgb = rgb.permute(1, 2, 0).reshape(-1, 3).cpu().numpy() save_file_ply(predictions_3d, rgb, os.path.join(base_path, f"{name}.ply")) def demo(model): # RGB + CAMERA rgb, outputs = infer( model, os.path.join(BASE_PATH, f"scannet.png"), os.path.join(BASE_PATH, "scannet.json"), ) if SAVE: save(rgb, outputs, name="scannet", base_path=BASE_PATH) # get GT and pred pts_pred = outputs["points"].squeeze().cpu().permute(1, 2, 0).numpy() pts_gt = np.load("./assets/demo/scannet.npy").astype(float) mask = np.linalg.norm(pts_gt, axis=-1) > 0 error = np.linalg.norm(pts_pred - pts_gt, axis=-1) error = np.mean(error[mask] ** 2) ** 0.5 # Trade-off between speed and resolution model.resolution_level = 1 rgb, outputs = infer( model, os.path.join(BASE_PATH, f"scannet.png"), os.path.join(BASE_PATH, "scannet.json"), ) if SAVE: save(rgb, outputs, name="scannet_lowres", base_path=BASE_PATH) # RGB rgb, outputs = infer(model, os.path.join(BASE_PATH, f"poorthings.jpg"), None) if SAVE: save(rgb, outputs, name="poorthings", base_path=BASE_PATH) # RGB + CAMERA rgb, outputs = infer( model, os.path.join(BASE_PATH, f"dl3dv.png"), os.path.join(BASE_PATH, "dl3dv.json"), ) if SAVE: save(rgb, outputs, name="dl3dv", base_path=BASE_PATH) # EQUIRECTANGULAR rgb, outputs = infer_equirectangular( model, os.path.join(BASE_PATH, f"equirectangular.jpg") ) if SAVE: save(rgb, outputs, name="equirectangular", base_path=BASE_PATH) print("Output keys are", outputs.keys()) if SAVE: print("Done! Results saved in", BASE_PATH) print(f"RMSE on 3D clouds for ScanNet++ sample: {100*error:.1f}cm") if __name__ == "__main__": print("Torch version:", torch.__version__) type_ = "l" # available types: s, b, l name = f"unik3d-vit{type_}" model = UniK3D.from_pretrained(f"lpiccinelli/{name}") # set resolution level in [0,10) and output interpolation model.resolution_level = 9 model.interpolation_mode = "bilinear" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device).eval() demo(model)