File size: 11,587 Bytes
373112b
 
 
dd5f0c1
c09e91b
b076993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
373112b
 
 
dd5f0c1
 
 
 
 
373112b
 
dd5f0c1
373112b
dd5f0c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
373112b
 
dd5f0c1
373112b
 
c09e91b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
373112b
 
 
c09e91b
dd5f0c1
373112b
 
b076993
373112b
dd5f0c1
373112b
 
b076993
373112b
dd5f0c1
373112b
dd5f0c1
 
a2f85fb
dd5f0c1
 
a2f85fb
 
99c7136
dd5f0c1
373112b
 
 
c09e91b
dd5f0c1
 
 
 
 
 
 
 
 
b076993
 
dd5f0c1
 
373112b
dd5f0c1
 
 
373112b
dd5f0c1
 
 
 
 
 
c09e91b
dd5f0c1
373112b
dd5f0c1
99c7136
c09e91b
dd5f0c1
 
 
 
 
 
 
 
 
 
 
 
 
373112b
 
 
dd5f0c1
 
373112b
 
 
dd5f0c1
 
a2f85fb
dd5f0c1
 
 
a2f85fb
dd5f0c1
 
 
a2f85fb
dd5f0c1
 
a2f85fb
dd5f0c1
a2f85fb
 
 
dd5f0c1
 
 
 
 
 
 
 
 
373112b
b076993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
373112b
dd5f0c1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import streamlit as st
import pandas as pd
import joblib
from sklearn.ensemble import RandomForestRegressor
import plotly.express as px
from sklearn.ensemble import RandomForestRegressor
import plotly.graph_objects as go
from PIL import Image
import plotly.express as px

# Set the page configuration
st.set_page_config(
    page_title="NBA Player Performance Predictor",
    page_icon="πŸ€",
    layout="centered"
)


team_logo_paths = {
    "Cleveland Cavaliers": "Clevelan-Cavaliers-logo-2022.png",
    "Atlanta Hawks": "nba-atlanta-hawks-logo.png",
    "Boston Celtics": "nba-boston-celtics-logo.png",
    "Brooklyn Nets": "nba-brooklyn-nets-logo.png",
    "Charlotte Hornets": "nba-charlotte-hornets-logo.png",
    "Chicago Bulls": "nba-chicago-bulls-logo.png",
    "Dallas Mavericks": "nba-dallas-mavericks-logo.png",
    "Denver Nuggets": "nba-denver-nuggets-logo-2018.png",
    "Detroit Pistons": "nba-detroit-pistons-logo.png",
    "Golden State Warriors": "nba-golden-state-warriors-logo-2020.png",
    "Houston Rockets": "nba-houston-rockets-logo-2020.png",
    "Indiana Pacers": "nba-indiana-pacers-logo.png",
    "LA Clippers": "nba-la-clippers-logo.png",
    "Los Angeles Lakers": "nba-los-angeles-lakers-logo.png",
    "Memphis Grizzlies": "nba-memphis-grizzlies-logo.png",
    "Miami Heat": "nba-miami-heat-logo.png",
    "Milwaukee Bucks": "nba-milwaukee-bucks-logo.png",
    "Minnesota Timberwolves": "nba-minnesota-timberwolves-logo.png",
    "New Orleans Pelicans": "nba-new-orleans-pelicans-logo.png",
    "New York Knicks": "nba-new-york-knicks-logo.png",
    "Oklahoma City Thunder": "nba-oklahoma-city-thunder-logo.png",
    "Orlando Magic": "nba-orlando-magic-logo.png",
    "Philadelphia 76ers": "nba-philadelphia-76ers-logo.png",
    "Phoenix Suns": "nba-phoenix-suns-logo.png",
    "Portland Trail Blazers": "nba-portland-trail-blazers-logo.png",
    "Sacramento Kings": "nba-sacramento-kings-logo.png",
    "San Antonio Spurs": "nba-san-antonio-spurs-logo.png",
    "Toronto Raptors": "nba-toronto-raptors-logo-2020.png",
    "Utah Jazz": "nba-utah-jazz-logo.png",
    "Washington Wizards": "nba-washington-wizards-logo.png",
}


# Mapping for position to numeric values
position_mapping = {
    "PG": 1.0,  # Point Guard
    "SG": 2.0,  # Shooting Guard
    "SF": 3.0,  # Small Forward
    "PF": 4.0,  # Power Forward
    "C": 5.0,   # Center
}

# Predefined injury types
injury_types = [
    "foot fracture injury",
    "hip flexor surgery injury",
    "calf strain injury",
    "quad injury injury",
    "shoulder sprain injury",
    "foot sprain injury",
    "torn rotator cuff injury injury",
    "torn mcl injury",
    "hip flexor strain injury",
    "fractured leg injury",
    "sprained mcl injury",
    "ankle sprain injury",
    "hamstring injury injury",
    "meniscus tear injury",
    "torn hamstring injury",
    "dislocated shoulder injury",
    "ankle fracture injury",
    "fractured hand injury",
    "bone spurs injury",
    "acl tear injury",
    "hip labrum injury",
    "back surgery injury",
    "arm injury injury",
    "torn shoulder labrum injury",
    "lower back spasm injury"
]

# Injury average days dictionary
average_days_injured = {
    "foot fracture injury": 207.666667,
    "hip flexor surgery injury": 256.000000,
    "calf strain injury": 236.000000,
    "quad injury injury": 283.000000,
    "shoulder sprain injury": 259.500000,
    "foot sprain injury": 294.000000,
    "torn rotator cuff injury injury": 251.500000,
    "torn mcl injury": 271.000000,
    "hip flexor strain injury": 253.000000,
    "fractured leg injury": 250.250000,
    "sprained mcl injury": 228.666667,
    "ankle sprain injury": 231.333333,
    "hamstring injury injury": 220.000000,
    "meniscus tear injury": 201.250000,
    "torn hamstring injury": 187.666667,
    "dislocated shoulder injury": 269.000000,
    "ankle fracture injury": 114.500000,
    "fractured hand injury": 169.142857,
    "bone spurs injury": 151.500000,
    "acl tear injury": 268.000000,
    "hip labrum injury": 247.500000,
    "back surgery injury": 215.800000,
    "arm injury injury": 303.666667,
    "torn shoulder labrum injury": 195.666667,
    "lower back spasm injury": 234.000000,
}


# Load player dataset
@st.cache_resource
def load_player_data():
    return pd.read_csv("player_data.csv")

# Load Random Forest model
@st.cache_resource
def load_rf_model():
    return joblib.load("rf_injury_change_model.pkl")

# Main Streamlit app
def main():
    st.title("NBA Player Performance Predictor")
    st.write(
        """
        Predict how a player's performance metrics (e.g., points, rebounds, assists) might change
        if a hypothetical injury occurs, based on their position and other factors.
        """
    )

    # Load player data
    player_data = load_player_data()
    rf_model = load_rf_model()

    # Sidebar inputs
    st.sidebar.header("Player and Injury Input")

    # Dropdown for player selection
    player_list = sorted(player_data['player_name'].dropna().unique())
    player_name = st.sidebar.selectbox("Select Player", player_list)

    if player_name:
        # Retrieve player details
        player_row = player_data[player_data['player_name'] == player_name]
        team_name = player_row.iloc[0]['team_abbreviation']
        position = player_row.iloc[0]['position']

        if not player_row.empty:
            position = player_row.iloc[0]['position']
            position_numeric = position_mapping.get(position, 0)

            st.sidebar.write(f"**Position**: {position} (Numeric: {position_numeric})")

            # Default values for features
            stats_columns = ['age', 'player_height', 'player_weight']
            default_stats = {
                stat: player_row.iloc[0][stat] if stat in player_row.columns else 0
                for stat in stats_columns
            }

            # Allow manual adjustment of stats
            for stat in default_stats.keys():
                default_stats[stat] = st.sidebar.number_input(f"{stat}", value=default_stats[stat])

            # Injury details
            injury_type = st.sidebar.selectbox("Select Hypothetical Injury", injury_types)
            # Replace slider with default average based on injury type
            default_days_injured = average_days_injured[injury_type] or 30  # Use 30 if `None`
            days_injured = st.sidebar.slider(
                "Estimated Days Injured",
                0,
                365,
                int(default_days_injured),
                help=f"Default days for {injury_type}: {int(default_days_injured) if default_days_injured else 'N/A'}"
            )            
            injury_occurrences = st.sidebar.number_input("Injury Occurrences", min_value=0, value=1)

            # Prepare input data
            input_data = pd.DataFrame([{
                "days_injured": days_injured,
                "injury_occurrences": injury_occurrences,
                "position": position_numeric,
                "injury_type": injury_type,  # Include the selected injury type
                **default_stats
            }])

            # Encode injury type
            input_data["injury_type"] = pd.factorize(input_data["injury_type"])[0]

            # Load Random Forest model
            try:
                rf_model = load_rf_model()

                # Align input data with the model's feature names
                expected_features = rf_model.feature_names_in_
                input_data = input_data.reindex(columns=rf_model.feature_names_in_, fill_value=0)

                # Predict and display results
                if st.sidebar.button("Predict"):
                    predictions = rf_model.predict(input_data)
                    prediction_columns = ["Predicted Change in PTS", "Predicted Change in REB", "Predicted Change inAST"]
                    st.subheader("Predicted Post-Injury Performance")
                    st.write("Based on the inputs, here are the predicted metrics:")
                    st.table(pd.DataFrame(predictions, columns=prediction_columns))
            except FileNotFoundError:
                st.error("Model file not found.")
            except ValueError as e:
                st.error(f"Error during prediction: {e}")

        else:
            st.sidebar.error("Player details not found in the dataset.")
    else:
        st.sidebar.error("Please select a player to view details.")

    st.divider()
    st.header("Player Overview")
    col1, col2 = st.columns([1, 2])

    with col1:
        st.subheader("Player Details")
        st.metric("Age", default_stats['age'])
        st.metric("Height (cm)", default_stats['player_height'])
        st.metric("Weight (kg)", default_stats['player_weight'])

    with col2:
        # Display team logo
        if team_name in team_logo_paths:
            logo_path = team_logo_paths[team_name]
            try:
                logo_image = Image.open(logo_path)
                st.image(logo_image, caption=f"{team_name} Logo", use_container_width=True)
            except FileNotFoundError:
                st.error(f"Logo for {team_name} not found.")


    # Graphs for PPG, AST, and REB
    st.divider()
    st.header("Player Performance Graphs")

    if st.button("Show Performance Graphs"):
        # Filter data for the selected player
        player_data_filtered = player_data[player_data["player_name"] == player_name].sort_values(by="season")

        # Ensure all seasons are included
        all_seasons = pd.Series(range(player_data["season"].min(), player_data["season"].max() + 1))
        player_data_filtered = (
            pd.DataFrame({"season": all_seasons})
            .merge(player_data_filtered, on="season", how="left")
        )

        if not player_data_filtered.empty:
            # PPG Graph
            fig_ppg = px.line(
                player_data_filtered,
                x="season",
                y="pts",
                title=f"{player_name}: Points Per Game (PPG) Over Seasons",
                labels={"pts": "Points Per Game (PPG)", "season": "Season"},
                markers=True
            )
            fig_ppg.update_layout(template="plotly_white")

            # AST Graph
            fig_ast = px.line(
                player_data_filtered,
                x="season",
                y="ast",
                title=f"{player_name}: Assists Per Game (AST) Over Seasons",
                labels={"ast": "Assists Per Game (AST)", "season": "Season"},
                markers=True
            )
            fig_ast.update_layout(template="plotly_white")

            # REB Graph
            fig_reb = px.line(
                player_data_filtered,
                x="season",
                y="reb",
                title=f"{player_name}: Rebounds Per Game (REB) Over Seasons",
                labels={"reb": "Rebounds Per Game (REB)", "season": "Season"},
                markers=True
            )
            fig_reb.update_layout(template="plotly_white")

            # Display graphs
            st.plotly_chart(fig_ppg, use_container_width=True)
            st.plotly_chart(fig_ast, use_container_width=True)
            st.plotly_chart(fig_reb, use_container_width=True)
        else:
            st.error("No data available for the selected player.")

    # Footer
    st.divider()
    st.markdown("""
    ### About This Tool
    This application predicts how injuries might impact an NBA player's performance using machine learning models. Data is based on historical player stats and injuries.
    """)

if __name__ == "__main__":
    main()