Spaces:
Sleeping
Sleeping
File size: 7,734 Bytes
373112b c09e91b a2f85fb c09e91b a2f85fb c09e91b 373112b 99c7136 373112b c09e91b 373112b 99c7136 373112b c09e91b 373112b c09e91b a2f85fb c09e91b 373112b 479a2cf 373112b 479a2cf 373112b c09e91b 373112b 99c7136 a2f85fb 99c7136 c09e91b 373112b c09e91b 99c7136 373112b 99c7136 c09e91b 99c7136 c09e91b 373112b c09e91b 373112b 99c7136 c09e91b 99c7136 c09e91b 373112b c09e91b 99c7136 373112b a2f85fb c09e91b a2f85fb 373112b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import streamlit as st
import pandas as pd
import joblib
import plotly.express as px
from PIL import Image
# Set the page configuration
st.set_page_config(
page_title="NBA Player Performance Predictor π",
page_icon="π",
layout="centered"
)
# Mapping for position to numeric values
position_mapping = {
"PG": 1.0,
"SG": 2.0,
"SF": 3.0,
"PF": 4.0,
"C": 5.0,
}
# Injury types and average days
injury_types = [
"foot fracture injury", "hip flexor surgery injury", "calf strain injury",
"quad injury injury", "shoulder sprain injury", "foot sprain injury",
"torn rotator cuff injury injury", "torn mcl injury", "hip flexor strain injury",
"fractured leg injury", "sprained mcl injury", "ankle sprain injury",
"hamstring injury injury", "meniscus tear injury", "torn hamstring injury",
"dislocated shoulder injury", "ankle fracture injury", "fractured hand injury",
"bone spurs injury", "acl tear injury", "hip labrum injury", "back surgery injury",
"arm injury injury", "torn shoulder labrum injury", "lower back spasm injury"
]
average_days_injured = {
"foot fracture injury": 207.666667,
"hip flexor surgery injury": 256.000000,
"calf strain injury": 236.000000,
"quad injury injury": 283.000000,
"shoulder sprain injury": 259.500000,
"foot sprain injury": 294.000000,
"torn rotator cuff injury injury": 251.500000,
"torn mcl injury": 271.000000,
"hip flexor strain injury": 253.000000,
"fractured leg injury": 250.250000,
"sprained mcl injury": 228.666667,
"ankle sprain injury": 231.333333,
"hamstring injury injury": 220.000000,
"meniscus tear injury": 201.250000,
"torn hamstring injury": 187.666667,
"dislocated shoulder injury": 269.000000,
"ankle fracture injury": 114.500000,
"fractured hand injury": 169.142857,
"bone spurs injury": 151.500000,
"acl tear injury": 268.000000,
"hip labrum injury": 247.500000,
"back surgery injury": 215.800000,
"arm injury injury": 303.666667,
"torn shoulder labrum injury": 195.666667,
"lower back spasm injury": 234.000000,
}
team_logo_paths = {
"Cleveland Cavaliers": "NBA_LOGOs/Clevelan-Cavaliers-logo-2022.png",
"Atlanta Hawks": "NBA_LOGOs/nba-atlanta-hawks-logo.png",
"Boston Celtics": "NBA_LOGOs/nba-boston-celtics-logo.png",
"Brooklyn Nets": "NBA_LOGOs/nba-brooklyn-nets-logo.png",
"Charlotte Hornets": "NBA_LOGOs/nba-charlotte-hornets-logo.png",
"Chicago Bulls": "NBA_LOGOs/nba-chicago-bulls-logo.png",
"Dallas Mavericks": "NBA_LOGOs/nba-dallas-mavericks-logo.png",
"Denver Nuggets": "NBA_LOGOs/nba-denver-nuggets-logo-2018.png",
"Detroit Pistons": "NBA_LOGOs/nba-detroit-pistons-logo.png",
"Golden State Warriors": "NBA_LOGOs/nba-golden-state-warriors-logo-2020.png",
"Houston Rockets": "NBA_LOGOs/nba-houston-rockets-logo-2020.png",
"Indiana Pacers": "NBA_LOGOs/nba-indiana-pacers-logo.png",
"LA Clippers": "NBA_LOGOs/nba-la-clippers-logo.png",
"Los Angeles Lakers": "NBA_LOGOs/nba-los-angeles-lakers-logo.png",
"Memphis Grizzlies": "NBA_LOGOs/nba-memphis-grizzlies-logo.png",
"Miami Heat": "NBA_LOGOs/nba-miami-heat-logo.png",
"Milwaukee Bucks": "NBA_LOGOs/nba-milwaukee-bucks-logo.png",
"Minnesota Timberwolves": "NBA_LOGOs/nba-minnesota-timberwolves-logo.png",
"New Orleans Pelicans": "NBA_LOGOs/nba-new-orleans-pelicans-logo.png",
"New York Knicks": "NBA_LOGOs/nba-new-york-knicks-logo.png",
"Oklahoma City Thunder": "NBA_LOGOs/nba-oklahoma-city-thunder-logo.png",
"Orlando Magic": "NBA_LOGOs/nba-orlando-magic-logo.png",
"Philadelphia 76ers": "NBA_LOGOs/nba-philadelphia-76ers-logo.png",
"Phoenix Suns": "NBA_LOGOs/nba-phoenix-suns-logo.png",
"Portland Trail Blazers": "NBA_LOGOs/nba-portland-trail-blazers-logo.png",
"Sacramento Kings": "NBA_LOGOs/nba-sacramento-kings-logo.png",
"San Antonio Spurs": "NBA_LOGOs/nba-san-antonio-spurs-logo.png",
"Toronto Raptors": "NBA_LOGOs/nba-toronto-raptors-logo-2020.png",
"Utah Jazz": "NBA_LOGOs/nba-utah-jazz-logo.png",
"Washington Wizards": "NBA_LOGOs/nba-washington-wizards-logo.png",
}
# Caching player data and model
@st.cache_resource
def load_player_data():
return pd.read_csv("player_data.csv")
@st.cache_resource
def load_rf_model():
return joblib.load("rf_injury_change_model.pkl")
# Main application
def main():
st.title("NBA Player Performance Predictor π")
st.markdown(
"""
Use this tool to predict how a player's performance metrics might change
if they experience a hypothetical injury.
"""
)
# Load data and model
player_data = load_player_data()
rf_model = load_rf_model()
# Sidebar inputs
with st.sidebar:
st.header("Player & Injury Inputs")
player_list = sorted(player_data['player_name'].dropna().unique())
player_name = st.selectbox("Select Player", player_list)
if player_name:
# Filter data for the selected player
player_row = player_data[player_data['player_name'] == player_name]
team_name = player_row.iloc[0]['team_abbreviation']
position = player_row.iloc[0]['position']
stats_columns = ['age', 'player_height', 'player_weight']
st.write(f"**Position**: {position}")
st.write(f"**Team**: {team_name}")
# Player stats
default_stats = {stat: player_row.iloc[0][stat] for stat in stats_columns}
for stat in default_stats.keys():
default_stats[stat] = st.number_input(f"{stat}", value=default_stats[stat])
# Injury details
injury_type = st.selectbox("Select Hypothetical Injury", injury_types)
default_days_injured = average_days_injured.get(injury_type, 30)
days_injured = st.slider("Estimated Days Injured", 0, 365, int(default_days_injured))
injury_occurrences = st.number_input("Injury Occurrences", min_value=0, value=1)
# Prepare data for prediction
input_data = pd.DataFrame([{
"days_injured": days_injured,
"injury_occurrences": injury_occurrences,
"position": position_mapping.get(position, 0),
"injury_type": injury_type,
**default_stats
}])
# One-hot encode injury type
input_data = pd.get_dummies(input_data, columns=["injury_type"], drop_first=True)
# Align with model's feature names
expected_features = rf_model.feature_names_in_
for feature in expected_features:
if feature not in input_data.columns:
input_data[feature] = 0
# Ensure columns are in the same order as the model's feature names
input_data = input_data[expected_features]
# Predict and display results
st.header("Prediction Results")
if st.sidebar.button("Predict"):
try:
predictions = rf_model.predict(input_data)
prediction_columns = ["Predicted Change in PTS", "Predicted Change in REB", "Predicted Change in AST"]
st.subheader("Predicted Post-Injury Performance")
st.write("Based on the inputs, here are the predicted metrics:")
st.table(pd.DataFrame(predictions, columns=prediction_columns))
except FileNotFoundError:
st.error("Model file not found.")
except ValueError as e:
st.error(f"Error during prediction: {e}")
if __name__ == "__main__":
main()
|