Spaces:
Sleeping
Sleeping
File size: 6,409 Bytes
373112b dd5f0c1 c09e91b 373112b dd5f0c1 373112b dd5f0c1 373112b dd5f0c1 373112b dd5f0c1 373112b c09e91b 373112b c09e91b dd5f0c1 373112b dd5f0c1 373112b dd5f0c1 373112b dd5f0c1 373112b dd5f0c1 373112b dd5f0c1 a2f85fb dd5f0c1 a2f85fb 99c7136 dd5f0c1 373112b c09e91b dd5f0c1 373112b dd5f0c1 373112b dd5f0c1 c09e91b dd5f0c1 373112b dd5f0c1 99c7136 c09e91b dd5f0c1 373112b dd5f0c1 373112b dd5f0c1 a2f85fb dd5f0c1 a2f85fb dd5f0c1 a2f85fb dd5f0c1 a2f85fb dd5f0c1 a2f85fb dd5f0c1 373112b dd5f0c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import streamlit as st
import pandas as pd
import joblib
from sklearn.ensemble import RandomForestRegressor
import plotly.express as px
# Mapping for position to numeric values
position_mapping = {
"PG": 1.0, # Point Guard
"SG": 2.0, # Shooting Guard
"SF": 3.0, # Small Forward
"PF": 4.0, # Power Forward
"C": 5.0, # Center
}
# Predefined injury types
injury_types = [
"foot fracture injury",
"hip flexor surgery injury",
"calf strain injury",
"quad injury injury",
"shoulder sprain injury",
"foot sprain injury",
"torn rotator cuff injury injury",
"torn mcl injury",
"hip flexor strain injury",
"fractured leg injury",
"sprained mcl injury",
"ankle sprain injury",
"hamstring injury injury",
"meniscus tear injury",
"torn hamstring injury",
"dislocated shoulder injury",
"ankle fracture injury",
"fractured hand injury",
"bone spurs injury",
"acl tear injury",
"hip labrum injury",
"back surgery injury",
"arm injury injury",
"torn shoulder labrum injury",
"lower back spasm injury"
]
# Injury average days dictionary
average_days_injured = {
"foot fracture injury": 207.666667,
"hip flexor surgery injury": 256.000000,
"calf strain injury": 236.000000,
"quad injury injury": 283.000000,
"shoulder sprain injury": 259.500000,
"foot sprain injury": 294.000000,
"torn rotator cuff injury injury": 251.500000,
"torn mcl injury": 271.000000,
"hip flexor strain injury": 253.000000,
"fractured leg injury": 250.250000,
"sprained mcl injury": 228.666667,
"ankle sprain injury": 231.333333,
"hamstring injury injury": 220.000000,
"meniscus tear injury": 201.250000,
"torn hamstring injury": 187.666667,
"dislocated shoulder injury": 269.000000,
"ankle fracture injury": 114.500000,
"fractured hand injury": 169.142857,
"bone spurs injury": 151.500000,
"acl tear injury": 268.000000,
"hip labrum injury": 247.500000,
"back surgery injury": 215.800000,
"arm injury injury": 303.666667,
"torn shoulder labrum injury": 195.666667,
"lower back spasm injury": 234.000000,
}
# Load player dataset
@st.cache_resource
def load_player_data():
return pd.read_csv("/Users/laraschuman/Desktop/CTP-Project/player_data.csv")
# Load Random Forest model
@st.cache_resource
def load_rf_model():
return joblib.load("/Users/laraschuman/Desktop/CTP-Project/rf_injury_change_model.pkl")
# Main Streamlit app
def main():
st.title("NBA Player Performance Predictor")
st.write(
"""
Predict how a player's performance metrics (e.g., points, rebounds, assists) might change
if a hypothetical injury occurs, based on their position and other factors.
"""
)
# Load player data
player_data = load_player_data()
rf_model = load_rf_model()
# Sidebar inputs
st.sidebar.header("Player and Injury Input")
# Dropdown for player selection
player_list = sorted(player_data['player_name'].dropna().unique())
player_name = st.sidebar.selectbox("Select Player", player_list)
if player_name:
# Retrieve player details
player_row = player_data[player_data['player_name'] == player_name]
if not player_row.empty:
position = player_row.iloc[0]['position']
position_numeric = position_mapping.get(position, 0)
st.sidebar.write(f"**Position**: {position} (Numeric: {position_numeric})")
# Default values for features
stats_columns = ['age', 'player_height', 'player_weight']
default_stats = {
stat: player_row.iloc[0][stat] if stat in player_row.columns else 0
for stat in stats_columns
}
# Allow manual adjustment of stats
for stat in default_stats.keys():
default_stats[stat] = st.sidebar.number_input(f"{stat}", value=default_stats[stat])
# Injury details
injury_type = st.sidebar.selectbox("Select Hypothetical Injury", injury_types)
# Replace slider with default average based on injury type
default_days_injured = average_days_injured[injury_type] or 30 # Use 30 if `None`
days_injured = st.sidebar.slider(
"Estimated Days Injured",
0,
365,
int(default_days_injured),
help=f"Default days for {injury_type}: {int(default_days_injured) if default_days_injured else 'N/A'}"
)
injury_occurrences = st.sidebar.number_input("Injury Occurrences", min_value=0, value=1)
# Prepare input data
input_data = pd.DataFrame([{
"days_injured": days_injured,
"injury_occurrences": injury_occurrences,
"position": position_numeric,
"injury_type": injury_type, # Include the selected injury type
**default_stats
}])
# Encode injury type
input_data["injury_type"] = pd.factorize(input_data["injury_type"])[0]
# Load Random Forest model
try:
rf_model = load_rf_model()
# Align input data with the model's feature names
expected_features = rf_model.feature_names_in_
input_data = input_data.reindex(columns=rf_model.feature_names_in_, fill_value=0)
# Predict and display results
if st.sidebar.button("Predict"):
predictions = rf_model.predict(input_data)
prediction_columns = ["Predicted Change in PTS", "Predicted Change in REB", "Predicted Change inAST"]
st.subheader("Predicted Post-Injury Performance")
st.write("Based on the inputs, here are the predicted metrics:")
st.table(pd.DataFrame(predictions, columns=prediction_columns))
except FileNotFoundError:
st.error("Model file not found.")
except ValueError as e:
st.error(f"Error during prediction: {e}")
else:
st.sidebar.error("Player details not found in the dataset.")
else:
st.sidebar.error("Please select a player to view details.")
if __name__ == "__main__":
main() |