import streamlit as st import pandas as pd import joblib from sklearn.ensemble import RandomForestRegressor import plotly.express as px from sklearn.ensemble import RandomForestRegressor import plotly.graph_objects as go from PIL import Image import plotly.express as px # Set the page configuration st.set_page_config( page_title="NBA Player Performance Predictor", page_icon="🏀", layout="centered" ) # Custom CSS for vibrant NBA sidebar header st.markdown( """ """, unsafe_allow_html=True ) team_logo_paths = { "Cleveland Cavaliers": "Clevelan-Cavaliers-logo-2022.png", "Atlanta Hawks": "nba-atlanta-hawks-logo.png", "Boston Celtics": "nba-boston-celtics-logo.png", "Brooklyn Nets": "nba-brooklyn-nets-logo.png", "Charlotte Hornets": "nba-charlotte-hornets-logo.png", "Chicago Bulls": "nba-chicago-bulls-logo.png", "Dallas Mavericks": "nba-dallas-mavericks-logo.png", "Denver Nuggets": "nba-denver-nuggets-logo-2018.png", "Detroit Pistons": "nba-detroit-pistons-logo.png", "Golden State Warriors": "nba-golden-state-warriors-logo-2020.png", "Houston Rockets": "nba-houston-rockets-logo-2020.png", "Indiana Pacers": "nba-indiana-pacers-logo.png", "LA Clippers": "nba-la-clippers-logo.png", "Los Angeles Lakers": "nba-los-angeles-lakers-logo.png", "Memphis Grizzlies": "nba-memphis-grizzlies-logo.png", "Miami Heat": "nba-miami-heat-logo.png", "Milwaukee Bucks": "nba-milwaukee-bucks-logo.png", "Minnesota Timberwolves": "nba-minnesota-timberwolves-logo.png", "New Orleans Pelicans": "nba-new-orleans-pelicans-logo.png", "New York Knicks": "nba-new-york-knicks-logo.png", "Oklahoma City Thunder": "nba-oklahoma-city-thunder-logo.png", "Orlando Magic": "nba-orlando-magic-logo.png", "Philadelphia 76ers": "nba-philadelphia-76ers-logo.png", "Phoenix Suns": "nba-phoenix-suns-logo.png", "Portland Trail Blazers": "nba-portland-trail-blazers-logo.png", "Sacramento Kings": "nba-sacramento-kings-logo.png", "San Antonio Spurs": "nba-san-antonio-spurs-logo.png", "Toronto Raptors": "nba-toronto-raptors-logo-2020.png", "Utah Jazz": "nba-utah-jazz-logo.png", "Washington Wizards": "nba-washington-wizards-logo.png", } # Mapping for position to numeric values position_mapping = { "PG": 1.0, # Point Guard "SG": 2.0, # Shooting Guard "SF": 3.0, # Small Forward "PF": 4.0, # Power Forward "C": 5.0, # Center } # Predefined injury types injury_types = [ "foot fracture injury", "hip flexor surgery injury", "calf strain injury", "quad injury injury", "shoulder sprain injury", "foot sprain injury", "torn rotator cuff injury injury", "torn mcl injury", "hip flexor strain injury", "fractured leg injury", "sprained mcl injury", "ankle sprain injury", "hamstring injury injury", "meniscus tear injury", "torn hamstring injury", "dislocated shoulder injury", "ankle fracture injury", "fractured hand injury", "bone spurs injury", "acl tear injury", "hip labrum injury", "back surgery injury", "arm injury injury", "torn shoulder labrum injury", "lower back spasm injury" ] # Injury average days dictionary average_days_injured = { "foot fracture injury": 207.666667, "hip flexor surgery injury": 256.000000, "calf strain injury": 236.000000, "quad injury injury": 283.000000, "shoulder sprain injury": 259.500000, "foot sprain injury": 294.000000, "torn rotator cuff injury injury": 251.500000, "torn mcl injury": 271.000000, "hip flexor strain injury": 253.000000, "fractured leg injury": 250.250000, "sprained mcl injury": 228.666667, "ankle sprain injury": 231.333333, "hamstring injury injury": 220.000000, "meniscus tear injury": 201.250000, "torn hamstring injury": 187.666667, "dislocated shoulder injury": 269.000000, "ankle fracture injury": 114.500000, "fractured hand injury": 169.142857, "bone spurs injury": 151.500000, "acl tear injury": 268.000000, "hip labrum injury": 247.500000, "back surgery injury": 215.800000, "arm injury injury": 303.666667, "torn shoulder labrum injury": 195.666667, "lower back spasm injury": 234.000000, } # Load player dataset @st.cache_resource def load_player_data(): return pd.read_csv("player_data.csv") # Load Random Forest model @st.cache_resource def load_rf_model(): return joblib.load("rf_injury_change_model.pkl") # Main Streamlit app def main(): st.title("NBA Player Performance Predictor 🏀") st.write( """ Welcome to the **NBA Player Performance Predictor**! This app helps predict changes in a player's performance metrics after experiencing a hypothetical injury. Simply input the details and see the magic happen! """ ) # Load player data and model player_data = load_player_data() rf_model = load_rf_model() # Sidebar inputs st.sidebar.markdown( """