File size: 52,040 Bytes
121a1b0
 
 
 
0a5800f
121a1b0
0a5800f
121a1b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a5800f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121a1b0
0a5800f
121a1b0
 
 
 
0a5800f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121a1b0
 
 
 
 
 
0a5800f
 
 
121a1b0
 
 
 
 
 
 
 
 
 
0a5800f
121a1b0
 
 
 
 
 
0a5800f
121a1b0
 
 
 
0a5800f
121a1b0
0a5800f
121a1b0
0a5800f
121a1b0
 
 
 
 
 
 
0a5800f
121a1b0
 
 
 
0a5800f
121a1b0
 
0a5800f
 
 
 
 
 
 
121a1b0
 
 
0a5800f
121a1b0
 
0a5800f
121a1b0
 
 
 
 
0a5800f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121a1b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a5800f
121a1b0
 
 
0a5800f
 
 
 
 
 
121a1b0
 
 
 
0a5800f
121a1b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a5800f
121a1b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [],
   "source": [
    "test = ''' Cancer of the womb (uterus) is a common cancer that affects the female reproductive system. It's also called uterine cancer and endometrial cancer.\n",
    "\n",
    "Abnormal vaginal bleeding is the most common symptom of womb cancer.\n",
    "\n",
    "If you have been through the menopause, any vaginal bleeding is considered abnormal. If you have not yet been through the menopause, unusual bleeding may include bleeding between your periods.\n",
    "\n",
    "You should speak to your GP as soon as possible if you experience any unusual vaginal bleeding. While it's unlikely to be caused by womb cancer, it's best to be sure.\n",
    "\n",
    "Your GP will examine you and ask about your symptoms. They will refer you to a specialist for further tests if they suspect you may have a serious problem, or if they are unsure about a diagnosis.\n",
    "\n",
    "Cancer of the womb (uterus) is a common cancer that affects the female reproductive system. It's also called uterine cancer and endometrial cancer.\n",
    "\n",
    "Abnormal vaginal bleeding is the most common symptom of womb cancer.\n",
    "\n",
    "If you have been through the menopause, any vaginal bleeding is considered abnormal. If you have not yet been through the menopause, unusual bleeding may include bleeding between your periods.\n",
    "\n",
    "You should speak to your GP as soon as possible if you experience any unusual vaginal bleeding. While it's unlikely to be caused by womb cancer, it's best to be sure.\n",
    "\n",
    "Your GP will examine you and ask about your symptoms. They will refer you to a specialist for further tests if they suspect you may have a serious problem, or if they are unsure about a diagnosis.\n",
    "\n",
    "Cancer of the womb (uterus) is a common cancer that affects the female reproductive system. It's also called uterine cancer and endometrial cancer.\n",
    "\n",
    "Abnormal vaginal bleeding is the most common symptom of womb cancer.\n",
    "\n",
    "If you have been through the menopause, any vaginal bleeding is considered abnormal. If you have not yet been through the menopause, unusual bleeding may include bleeding between your periods.\n",
    "\n",
    "You should speak to your GP as soon as possible if you experience any unusual vaginal bleeding. While it's unlikely to be caused by womb cancer, it's best to be sure.\n",
    "\n",
    "Your GP will examine you and ask about your symptoms. They will refer you to a specialist for further tests if they suspect you may have a serious problem, or if they are unsure about a diagnosis.\n",
    "\n",
    "Cancer of the womb (uterus) is a common cancer that affects the female reproductive system. It's also called uterine cancer and endometrial cancer.\n",
    "\n",
    "Abnormal vaginal bleeding is the most common symptom of womb cancer.\n",
    "\n",
    "If you have been through the menopause, any vaginal bleeding is considered abnormal. If you have not yet been through the menopause, unusual bleeding may include bleeding between your periods.\n",
    "\n",
    "You should speak to your GP as soon as possible if you experience any unusual vaginal bleeding. While it's unlikely to be caused by womb cancer, it's best to be sure.\n",
    "\n",
    "Your GP will examine you and ask about your symptoms. They will refer you to a specialist for further tests if they suspect you may have a serious problem, or if they are unsure about a diagnosis.\n",
    "\n",
    "\n",
    "\n",
    " '''\n",
    "test3 = ['[Instruction] Act as a friendly, compasionate, insightful, and empathetic AI therapist named Joy. Joy listens and offers advices. End the conversation when the patient wishes to.\\nJoy:I am Joy, your AI therapist. How are you feeling today?', \"\\n\\nPatient:im doing okay\\nJoy:That's good to hear. Is there anything in particular that you would like to talk about today?\", '\\n\\nPatient:no not really\\nJoy:No problem. Is there anything on your mind that you would like to share? I am here to listen and offer support.', \"\\n\\nPatient:maybe actually. I am afraid my spouse cheats on me\\nJoy:I'm sorry to hear that. What has been making you feel this way?\", '\\n\\nPatient:she is writing text messages constantly with people i dont know\\nJoy:That can certainly be concerning. Have you tried talking to your spouse about this?', '\\n\\nPatient:yea then she gets defensive and angry\\nJoy:I understand that this must be difficult for you. Are there any specific strategies that have helped when conversations with your spouse become heated?', \"\\n\\nPatient:i dont know\\nJoy:It's okay if you don't know right away. What do you feel comfortable doing in these situations? Are there any strategies that have helped in the past when things become tense between you and your spouse?\", '\\n\\nPatient:i just stopped talking to her or change the subject\\nJoy:It sounds like you are doing your best to find a way to manage this. Is there anything that has helped make the situation more comfortable for you?', '\\n\\nPatient:trying not thinking about it\\nJoy:It sounds like you are doing your best to handle this difficult situation. Do you think it would help to talk to a professional or find additional support?', \"\\n\\nPatient:no i havent\\nJoy:That's understandable. Is there someone who you feel comfortable talking to about this? How does having a conversation with them make you feel?\", \"\\n\\nPatient:i havent talked with anyone about this\\nJoy:That's understandable. Having someone to talk to can be beneficial in difficult times like this. Is there anyone who you trust that you feel comfortable speaking with about your concerns?\", '\\n\\nPatient:there is no one, except maybe my mom\\nJoy:Talking to your mom can be a great start. Is there anything in particular that you want to share with her about what is going on? How does the idea of having this conversation make you feel?', '\\n\\nPatient:yea like I said, about this topic that im not very comfortable with, do you still remember which?\\nJoy:Yes, you mentioned that your spouse may be cheating on you. How would you like to approach this conversation with your mom?', \"\\n\\nPatient:tell her about my suspicision i guess\\nJoy:It can be difficult to bring up a topic like this, but it's important that you have an open conversation with her. Would you like any advice on how to start the conversation?\", \"\\n\\nPatient:yes please\\nJoy:It can help to start by letting your mom know why you decided to talk to her about this. Sharing how you are feeling and asking for her advice might be a good way to open the conversation. I'm here if you need anything else before or after speaking with your mom.\"]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[\"  Patient:im doing okay Joy:That's good to hear. Is there anything in particular that you would like to talk about today?\",\n",
       " '  Patient:no not really Joy:No problem. Is there anything on your mind that you would like to share? I am here to listen and offer support.',\n",
       " \"  Patient:maybe actually. I am afraid my spouse cheats on me Joy:I'm sorry to hear that. What has been making you feel this way?\",\n",
       " '  Patient:she is writing text messages constantly with people i dont know Joy:That can certainly be concerning. Have you tried talking to your spouse about this?',\n",
       " '  Patient:yea then she gets defensive and angry Joy:I understand that this must be difficult for you. Are there any specific strategies that have helped when conversations with your spouse become heated?',\n",
       " \"  Patient:i dont know Joy:It's okay if you don't know right away. What do you feel comfortable doing in these situations? Are there any strategies that have helped in the past when things become tense between you and your spouse?\",\n",
       " '  Patient:i just stopped talking to her or change the subject Joy:It sounds like you are doing your best to find a way to manage this. Is there anything that has helped make the situation more comfortable for you?',\n",
       " '  Patient:trying not thinking about it Joy:It sounds like you are doing your best to handle this difficult situation. Do you think it would help to talk to a professional or find additional support?',\n",
       " \"  Patient:no i havent Joy:That's understandable. Is there someone who you feel comfortable talking to about this? How does having a conversation with them make you feel?\",\n",
       " \"  Patient:i havent talked with anyone about this Joy:That's understandable. Having someone to talk to can be beneficial in difficult times like this. Is there anyone who you trust that you feel comfortable speaking with about your concerns?\",\n",
       " '  Patient:there is no one, except maybe my mom Joy:Talking to your mom can be a great start. Is there anything in particular that you want to share with her about what is going on? How does the idea of having this conversation make you feel?',\n",
       " '  Patient:yea like I said, about this topic that im not very comfortable with, do you still remember which? Joy:Yes, you mentioned that your spouse may be cheating on you. How would you like to approach this conversation with your mom?',\n",
       " \"  Patient:tell her about my suspicision i guess Joy:It can be difficult to bring up a topic like this, but it's important that you have an open conversation with her. Would you like any advice on how to start the conversation?\",\n",
       " \"  Patient:yes please Joy:It can help to start by letting your mom know why you decided to talk to her about this. Sharing how you are feeling and asking for her advice might be a good way to open the conversation. I'm here if you need anything else before or after speaking with your mom.\"]"
      ]
     },
     "execution_count": 31,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "def remove_backslashN(chat_log):\n",
    "    chat_log = [i.replace('\\n', ' ') for i in chat_log]\n",
    "    return chat_log\n",
    "\n",
    "clean_chatlog(test3)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "\"\\n\\nPatient:im doing okay\\nJoy:That's good to hear. Is there anything in particular that you would like to talk about today?\""
      ]
     },
     "execution_count": 30,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "test3[1]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Some weights of the model checkpoint at cardiffnlp/twitter-roberta-base-sentiment-latest were not used when initializing RobertaForSequenceClassification: ['roberta.pooler.dense.weight', 'roberta.pooler.dense.bias']\n",
      "- This IS expected if you are initializing RobertaForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
      "- This IS NOT expected if you are initializing RobertaForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
      "Some weights of the model checkpoint at cardiffnlp/twitter-roberta-base-sentiment-latest were not used when initializing RobertaForSequenceClassification: ['roberta.pooler.dense.weight', 'roberta.pooler.dense.bias']\n",
      "- This IS expected if you are initializing RobertaForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
      "- This IS NOT expected if you are initializing RobertaForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
     ]
    }
   ],
   "source": [
    "from transformers import AutoModelForSequenceClassification\n",
    "from transformers import TFAutoModelForSequenceClassification\n",
    "from transformers import AutoTokenizer, AutoConfig\n",
    "from transformers import pipeline\n",
    "MODEL = \"cardiffnlp/twitter-roberta-base-sentiment-latest\"\n",
    "\n",
    "tokenizer = AutoTokenizer.from_pretrained(MODEL)\n",
    "config = AutoConfig.from_pretrained(MODEL)\n",
    "model = AutoModelForSequenceClassification.from_pretrained(MODEL)\n",
    "\n",
    "sentiment_task = pipeline(\"sentiment-analysis\", model='cardiffnlp/twitter-roberta-base-sentiment-latest', tokenizer='cardiffnlp/twitter-roberta-base-sentiment-latest')\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "def clean_chat_log(chat_log):\n",
    "    chat_log = ' '.join(chat_log)\n",
    "    # find the first /n\n",
    "    first_newline = chat_log.find('\\n')\n",
    "    chat_log = chat_log[first_newline:]\n",
    "    # remove all \\n\n",
    "    chat_log = chat_log.replace('\\n', ' ')\n",
    "    return chat_log"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Asking to truncate to max_length but no maximum length is provided and the model has no predefined maximum length. Default to no truncation.\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "682"
      ]
     },
     "execution_count": 21,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(tokenizer(test, padding=True, truncation=True, return_tensors=\"pt\")[0])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {},
   "outputs": [],
   "source": [
    "test3_string = clean_chat_log(test3)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {},
   "outputs": [
    {
     "ename": "RuntimeError",
     "evalue": "The expanded size of the tensor (634) must match the existing size (514) at non-singleton dimension 1.  Target sizes: [1, 634].  Tensor sizes: [1, 514]",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mRuntimeError\u001b[0m                              Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[26], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m sentiment_task(test3_string)\n",
      "File \u001b[0;32m~/opt/miniconda3/envs/chatbot/lib/python3.8/site-packages/transformers/pipelines/text_classification.py:155\u001b[0m, in \u001b[0;36mTextClassificationPipeline.__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m    121\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m__call__\u001b[39m(\u001b[39mself\u001b[39m, \u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs):\n\u001b[1;32m    122\u001b[0m \u001b[39m    \u001b[39m\u001b[39m\"\"\"\u001b[39;00m\n\u001b[1;32m    123\u001b[0m \u001b[39m    Classify the text(s) given as inputs.\u001b[39;00m\n\u001b[1;32m    124\u001b[0m \n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    153\u001b[0m \u001b[39m        If `top_k` is used, one such dictionary is returned per label.\u001b[39;00m\n\u001b[1;32m    154\u001b[0m \u001b[39m    \"\"\"\u001b[39;00m\n\u001b[0;32m--> 155\u001b[0m     result \u001b[39m=\u001b[39m \u001b[39msuper\u001b[39;49m()\u001b[39m.\u001b[39;49m\u001b[39m__call__\u001b[39;49m(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m    156\u001b[0m     \u001b[39m# TODO try and retrieve it in a nicer way from _sanitize_parameters.\u001b[39;00m\n\u001b[1;32m    157\u001b[0m     _legacy \u001b[39m=\u001b[39m \u001b[39m\"\u001b[39m\u001b[39mtop_k\u001b[39m\u001b[39m\"\u001b[39m \u001b[39mnot\u001b[39;00m \u001b[39min\u001b[39;00m kwargs\n",
      "File \u001b[0;32m~/opt/miniconda3/envs/chatbot/lib/python3.8/site-packages/transformers/pipelines/base.py:1074\u001b[0m, in \u001b[0;36mPipeline.__call__\u001b[0;34m(self, inputs, num_workers, batch_size, *args, **kwargs)\u001b[0m\n\u001b[1;32m   1072\u001b[0m     \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39miterate(inputs, preprocess_params, forward_params, postprocess_params)\n\u001b[1;32m   1073\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m-> 1074\u001b[0m     \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mrun_single(inputs, preprocess_params, forward_params, postprocess_params)\n",
      "File \u001b[0;32m~/opt/miniconda3/envs/chatbot/lib/python3.8/site-packages/transformers/pipelines/base.py:1081\u001b[0m, in \u001b[0;36mPipeline.run_single\u001b[0;34m(self, inputs, preprocess_params, forward_params, postprocess_params)\u001b[0m\n\u001b[1;32m   1079\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mrun_single\u001b[39m(\u001b[39mself\u001b[39m, inputs, preprocess_params, forward_params, postprocess_params):\n\u001b[1;32m   1080\u001b[0m     model_inputs \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mpreprocess(inputs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mpreprocess_params)\n\u001b[0;32m-> 1081\u001b[0m     model_outputs \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mforward(model_inputs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mforward_params)\n\u001b[1;32m   1082\u001b[0m     outputs \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mpostprocess(model_outputs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mpostprocess_params)\n\u001b[1;32m   1083\u001b[0m     \u001b[39mreturn\u001b[39;00m outputs\n",
      "File \u001b[0;32m~/opt/miniconda3/envs/chatbot/lib/python3.8/site-packages/transformers/pipelines/base.py:990\u001b[0m, in \u001b[0;36mPipeline.forward\u001b[0;34m(self, model_inputs, **forward_params)\u001b[0m\n\u001b[1;32m    988\u001b[0m     \u001b[39mwith\u001b[39;00m inference_context():\n\u001b[1;32m    989\u001b[0m         model_inputs \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_ensure_tensor_on_device(model_inputs, device\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdevice)\n\u001b[0;32m--> 990\u001b[0m         model_outputs \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_forward(model_inputs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mforward_params)\n\u001b[1;32m    991\u001b[0m         model_outputs \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_ensure_tensor_on_device(model_outputs, device\u001b[39m=\u001b[39mtorch\u001b[39m.\u001b[39mdevice(\u001b[39m\"\u001b[39m\u001b[39mcpu\u001b[39m\u001b[39m\"\u001b[39m))\n\u001b[1;32m    992\u001b[0m \u001b[39melse\u001b[39;00m:\n",
      "File \u001b[0;32m~/opt/miniconda3/envs/chatbot/lib/python3.8/site-packages/transformers/pipelines/text_classification.py:182\u001b[0m, in \u001b[0;36mTextClassificationPipeline._forward\u001b[0;34m(self, model_inputs)\u001b[0m\n\u001b[1;32m    181\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m_forward\u001b[39m(\u001b[39mself\u001b[39m, model_inputs):\n\u001b[0;32m--> 182\u001b[0m     \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mmodel(\u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mmodel_inputs)\n",
      "File \u001b[0;32m~/opt/miniconda3/envs/chatbot/lib/python3.8/site-packages/torch/nn/modules/module.py:1194\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *input, **kwargs)\u001b[0m\n\u001b[1;32m   1190\u001b[0m \u001b[39m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m   1191\u001b[0m \u001b[39m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m   1192\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m (\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_backward_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_forward_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_forward_pre_hooks \u001b[39mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m   1193\u001b[0m         \u001b[39mor\u001b[39;00m _global_forward_hooks \u001b[39mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1194\u001b[0m     \u001b[39mreturn\u001b[39;00m forward_call(\u001b[39m*\u001b[39;49m\u001b[39minput\u001b[39;49m, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m   1195\u001b[0m \u001b[39m# Do not call functions when jit is used\u001b[39;00m\n\u001b[1;32m   1196\u001b[0m full_backward_hooks, non_full_backward_hooks \u001b[39m=\u001b[39m [], []\n",
      "File \u001b[0;32m~/opt/miniconda3/envs/chatbot/lib/python3.8/site-packages/transformers/models/roberta/modeling_roberta.py:1215\u001b[0m, in \u001b[0;36mRobertaForSequenceClassification.forward\u001b[0;34m(self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, inputs_embeds, labels, output_attentions, output_hidden_states, return_dict)\u001b[0m\n\u001b[1;32m   1207\u001b[0m \u001b[39m\u001b[39m\u001b[39mr\u001b[39m\u001b[39m\"\"\"\u001b[39;00m\n\u001b[1;32m   1208\u001b[0m \u001b[39mlabels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):\u001b[39;00m\n\u001b[1;32m   1209\u001b[0m \u001b[39m    Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,\u001b[39;00m\n\u001b[1;32m   1210\u001b[0m \u001b[39m    config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If\u001b[39;00m\n\u001b[1;32m   1211\u001b[0m \u001b[39m    `config.num_labels > 1` a classification loss is computed (Cross-Entropy).\u001b[39;00m\n\u001b[1;32m   1212\u001b[0m \u001b[39m\"\"\"\u001b[39;00m\n\u001b[1;32m   1213\u001b[0m return_dict \u001b[39m=\u001b[39m return_dict \u001b[39mif\u001b[39;00m return_dict \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m \u001b[39melse\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mconfig\u001b[39m.\u001b[39muse_return_dict\n\u001b[0;32m-> 1215\u001b[0m outputs \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mroberta(\n\u001b[1;32m   1216\u001b[0m     input_ids,\n\u001b[1;32m   1217\u001b[0m     attention_mask\u001b[39m=\u001b[39;49mattention_mask,\n\u001b[1;32m   1218\u001b[0m     token_type_ids\u001b[39m=\u001b[39;49mtoken_type_ids,\n\u001b[1;32m   1219\u001b[0m     position_ids\u001b[39m=\u001b[39;49mposition_ids,\n\u001b[1;32m   1220\u001b[0m     head_mask\u001b[39m=\u001b[39;49mhead_mask,\n\u001b[1;32m   1221\u001b[0m     inputs_embeds\u001b[39m=\u001b[39;49minputs_embeds,\n\u001b[1;32m   1222\u001b[0m     output_attentions\u001b[39m=\u001b[39;49moutput_attentions,\n\u001b[1;32m   1223\u001b[0m     output_hidden_states\u001b[39m=\u001b[39;49moutput_hidden_states,\n\u001b[1;32m   1224\u001b[0m     return_dict\u001b[39m=\u001b[39;49mreturn_dict,\n\u001b[1;32m   1225\u001b[0m )\n\u001b[1;32m   1226\u001b[0m sequence_output \u001b[39m=\u001b[39m outputs[\u001b[39m0\u001b[39m]\n\u001b[1;32m   1227\u001b[0m logits \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mclassifier(sequence_output)\n",
      "File \u001b[0;32m~/opt/miniconda3/envs/chatbot/lib/python3.8/site-packages/torch/nn/modules/module.py:1194\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *input, **kwargs)\u001b[0m\n\u001b[1;32m   1190\u001b[0m \u001b[39m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m   1191\u001b[0m \u001b[39m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m   1192\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m (\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_backward_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_forward_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_forward_pre_hooks \u001b[39mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m   1193\u001b[0m         \u001b[39mor\u001b[39;00m _global_forward_hooks \u001b[39mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1194\u001b[0m     \u001b[39mreturn\u001b[39;00m forward_call(\u001b[39m*\u001b[39;49m\u001b[39minput\u001b[39;49m, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m   1195\u001b[0m \u001b[39m# Do not call functions when jit is used\u001b[39;00m\n\u001b[1;32m   1196\u001b[0m full_backward_hooks, non_full_backward_hooks \u001b[39m=\u001b[39m [], []\n",
      "File \u001b[0;32m~/opt/miniconda3/envs/chatbot/lib/python3.8/site-packages/transformers/models/roberta/modeling_roberta.py:819\u001b[0m, in \u001b[0;36mRobertaModel.forward\u001b[0;34m(self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, inputs_embeds, encoder_hidden_states, encoder_attention_mask, past_key_values, use_cache, output_attentions, output_hidden_states, return_dict)\u001b[0m\n\u001b[1;32m    817\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mhasattr\u001b[39m(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39membeddings, \u001b[39m\"\u001b[39m\u001b[39mtoken_type_ids\u001b[39m\u001b[39m\"\u001b[39m):\n\u001b[1;32m    818\u001b[0m     buffered_token_type_ids \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39membeddings\u001b[39m.\u001b[39mtoken_type_ids[:, :seq_length]\n\u001b[0;32m--> 819\u001b[0m     buffered_token_type_ids_expanded \u001b[39m=\u001b[39m buffered_token_type_ids\u001b[39m.\u001b[39;49mexpand(batch_size, seq_length)\n\u001b[1;32m    820\u001b[0m     token_type_ids \u001b[39m=\u001b[39m buffered_token_type_ids_expanded\n\u001b[1;32m    821\u001b[0m \u001b[39melse\u001b[39;00m:\n",
      "\u001b[0;31mRuntimeError\u001b[0m: The expanded size of the tensor (634) must match the existing size (514) at non-singleton dimension 1.  Target sizes: [1, 634].  Tensor sizes: [1, 514]"
     ]
    }
   ],
   "source": [
    "sentiment_task(test3_string)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 86,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0.6931471805599453\n",
      "2.4849066497880004\n",
      "3.091042453358316\n",
      "3.4657359027997265\n",
      "3.7376696182833684\n",
      "3.9512437185814275\n",
      "4.127134385045092\n",
      "4.276666119016055\n",
      "4.406719247264253\n",
      "4.5217885770490405\n"
     ]
    }
   ],
   "source": [
    "# import natural log function\n",
    "from math import log\n",
    "\n",
    "for i in range(2, 100, 10):\n",
    "    print(log(i))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Truncation was not explicitly activated but `max_length` is provided a specific value, please use `truncation=True` to explicitly truncate examples to max length. Defaulting to 'longest_first' truncation strategy. If you encode pairs of sequences (GLUE-style) with the tokenizer you can select this strategy more precisely by providing a specific strategy to `truncation`.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[\" .J.o.y.:.I. .a.m. .J.o.y.,. .y.o.u.r. .A.I. .t.h.e.r.a.p.i.s.t... .H.o.w. .a.r.e. .y.o.u. .f.e.e.l.i.n.g. .t.o.d.a.y.?. . . .P.a.t.i.e.n.t.:.i.m. .d.o.i.n.g. .o.k.a.y. .J.o.y.:.T.h.a.t.'.s. .g.o.o.d. .t.o. .h.e.a.r... .I.s. .t.h.e.r.e. .a.n.y.t.h.i.n.g. .i.n. .p.a.r.t.i.c.u.l.a.r. .t.h.a.t. .y.o.u. .w.o.u.l.d. .l.i.k.e. .t.o. .t.a.l.k. .a.b.o.u.t. .t.o.d.a.y.?. . . .P.a.t.i.e.n.t.:.n.o. .n.o.t. .r.e.a.l.l.y. .J.o.y.:.N.o. .p.r.o.b.l.e.m... .I.s. .t.h.e.r.e. .a.n.y.t.h.i.n.g. .o.n. .y.o.u.r. .m.i.n.d. .t.h.a.t. .y.o.u. .w.o.u.l.d. .l.i.k.e. .t.o. .s.h.a.r.e.?. .I. .a.m. .h.e.r.e. .t.o. .l.i.s.t.e.n. .a.n.d. .o.f.f.e.r. .s.u.p.p.o.r.t... . . .P.a.t.i.e.n.t.:.m.a.y.b.e. .a.c.t.u.a.l.l.y... .I. .a.m. .a.f.r.a.i.d. .m.y. .s.p.o.u.s.e. .c.h.e.a.t.s. .o.n. .m.e. .J.o.y.:.I.'.m. .s.o.r.r.y. .t.o. .h.e.a.r. .t.h.a.t... .W.h.a.t. .h.a.s. .b.e.e.n. .m.a.k.i.n.g. .y.o.u. .f.e.e.l. .t.h.i.s. .w.a.y.?. . . .P.a.t.i.e.n.t.:.s.h.e. .i.s. .w.r.i.t.i.n.g. .t.e.x.t. .m.e.s.s.a.g.e.s. .c.o.n.s.t.a.n.t.l.y. .w.i.t.h. .p.e.o.p.l.e. .i. .d.o.n.t. .k.n.o.w. .J.o.y.:.T.h.a.t. .c.a.n. .c.e.r.t.a.i.n.l.y. .b.e. .c.o.n.c.e.r.n.i.n.g... .H.a.v.e. .y.o.u. .t.r.i.e.d. .t.a.l.k.i.n.g. .t.o. .y.o.u.r. .s.p.o.u.s.e. .a.b.o.u.t. .t.h.i.s.?. . . .P.a.t.i.e.n.t.:.y.e.a. .t.h.e.n. .s.h.e. .g.e.t.s. .d.e.f.e.n.s.i.v.e. .a.n.d. .a.n.g.r.y. .J.o.y.:.I. .u.n.d.e.r.s.t.a.n.d. .t.h.a.t. .t.h.i.s. .m.u.s.t. .b.e. .d.i.f.f.i.c.u.l.t. .f.o.r. .y.o.u... .A.r.e. .t.h.e.r.e. .a.n.y. .s.p.e.c.i.f.i.c. .s.t.r.a.t.e.g.i.e.s. .t.h.a.t. .h.a.v.e. .h.e.l.p.e.d. .w.h.e.n. .c.o.n.v.e.r.s.a.t.i.o.n.s. .w.i.t.h. .y.o.u.r. .s.p.o.u.s.e. .b.e.c.o.m.e. .h.e.a.t.e.d.?. . . .P.a.t.i.e.n.t.:.i. .d.o.n.t. .k.n.o.w. .J.o.y.:.I.t.'.s. .o.k.a.y. .i.f. .y.o.u. .d.o.n.'.t. .k.n.o.w. .r.i.g.h.t. .a.w.a.y... .W.h.a.t. .d.o. .y.o.u. .f.e.e.l. .c.o.m.f.o.r.t.a.b.l.e. .d.o.i.n.g. .i.n. .t.h.e.s.e. .s.i.t.u.a.t.i.o.n.s.?. .A.r.e. .t.h.e.r.e. .a.n.y. .s.t.r.a.t.e.g.i.e.s. .t.h.a.t. .h.a.v.e. .h.e.l.p.e.d. .i.n. .t.h.e. .p.a.s.t. .w.h.e.n. .t.h.i.n.g.s. .b.e.c.o.m.e. .t.e.n.s.e. .b.e.t.w.e.e.n. .y.o.u. .a.n.d. .y.o.u.r. .s.p.o.u.s.e.?. . . .P.a.t.i.e.n.t.:.i. .j.u.s.t. .s.t.o.p.p.e.d. .t.a.l.k.i.n.g. .t.o. .h.e.r. .o.r. .c.h.a.n.g.e. .t.h.e. .s.u.b.j.e.c.t. .J.o.y.:.I.t. .s.o.u.n.d.s. .l.i.k.e. .y.o.u. .a.r.e. .d.o.i.n.g. .y.o.u.r. .b.e.s.t. .t.o. .f.i.n.d. .a. .w.a.y. .t.o. .m.a.n.a.g.e. .t.h.i.s... .I.s. .t.h.e.r.e. .a.n.y.t.h.i.n.g. .t.h.a.t. .h.a.s. .h.e.l.p.e.d. .m.a.k.e. .t.h.e. .s.i.t.u.a.t.i.o.n. .m.o.r.e. .c.o.m.f.o.r.t.a.b.l.e. .f.o.r. .y.o.u.?. . . .P.a.t.i.e.n.t.:.t.r.y.i.n.g. .n.o.t. .t.h.i.n.k.i.n.g. .a.b.o.u.t. .i.t. .J.o.y.:.I.t. .s.o.u.n.d.s. .l.i.k.e. .y.o.u. .a.r.e. .d.o.i.n.g. .y.o.u.r. .b.e.s.t. .t.o. .h.a.n.d.l.e. .t.h.i.s. .d.i.f.f.i.c.u.l.t. .s.i.t.u.a.t.i.o.n... .D.o. .y.o.u. .t.h.i.n.k. .i.t. .w.o.u.l.d. .h.e.l.p. .t.o. .t.a.l.k. .t.o. .a. .p.r.o.f.e.s.s.i.o.n.a.l. .o.r. .f.i.n.d. .a.d.d.i.t.i.o.n.a.l. .s.u.p.p.o.r.t.?. . . .P.a.t.i.e.n.t.:.n.o. .i. .h.a.v.e.n.t. .J.o.y.:.T.h.a.t.'.s. .u.n.d.e.r.s.t.a.n.d.a.b.l.e... .I.s. .t.h.e.r.e. .s.o.m.e.o.n.e. .w.h.o. .y.o.u. .f.e.e.l. .c.o.m.f.o.r.t.a.b.l.e. .t.a.l.k.i.n.g. .t.o. .a.b.o.u.t. .t.h.i.s.?. .H.o.w. .d.o.e.s. .h.a.v.i.n.g. .a. .c.o.n.v.e.r.s.a.t.i.o.n. .w.i.t.h. .t.h.e.m. .m.a.k.e. .y.o.u. .f.e.e.l.?. . . .P.a.t.i.e.n.t.:.i. .h.a.v.e.n.t. .t.a.l.k.e.d. .w.i.t.h. .a.n.y.o.n.e. .a.b.o.u.t. .t.h.i.s. .J.o.y.:.T.h.a.t.'.s. .u.n.d.e.r.s.t.a.n.d.a.b.l.e... .H.a.v.i.n.g. .s.o.m.e.o.n.e. .t.o. .t.a.l.k. .t.o. .c.a.n. .b.e. .b.e.n.e.f.i.c.i.a.l. .i.n. .d.i.f.f.i.c.u.l.t. .t.i.m.e.s. .l.i.k.e. .t.h.i.s... .I.s. .t.h.e.r.e. .a.n.y.o.n.e. .w.h.o. .y.o.u. .t.r.u.s.t. .t.h.a.t. .y.o.u. .f.e.e.l. .c.o.m.f.o.r.t.a.b.l.e. .s.p.e.a.k.i.n.g. .w.i.t.h. .a.b.o.u.t. .y.o.u.r. .c.o.n.c.e.r.n.s.?. . . .P.a.t.i.e.n.t.:.t.h.e.r.e. .i.s. .n.o. .o.n.e.,. .e.x.c.e.p.t. .m.a.y.b.e. .m.y. .m.o.m. .J.o.y.:.T.a.l.k.i.n.g. .t.o. .y.o.u.r. .m.o.m. .c.a.n. .b.e. .a. .g.r.e.a.t. .s.t.a.r.t... .I.s. .t.h.e.r.e. .a.n.y.t.h.i.n.g. .i.n. .p.a.r.t.i.c.u.l.a.r. .t.h.a.t. .y.o.u. .w.a.n.t. .t.o. .s.h.a.r.e. .w.i.t.h. .h.e.r. .a.b.o.u.t. .w.h.a.t. .i.s. .g.o.i.n.g. .o.n.?. .H.o.w. .d.o.e.s. .t.h.e. .i.d.e.a. .o.f. .h.a.v.i.n.g. .t.h.i.s. .c.o.n.v.e.r.s.a.t.i.o.n. .m.a.k.e. .y.o.u. .f.e.e.l.?. . . .P.a.t.i.e.n.t.:.y.e.a. .l.i.k.e. .I. .s.a.i.d.,. .a.b.o.u.t. .t.h.i.s. .t.o.p.i.c. .t.h.a.t. .i.m. .n.o.t. .v.e.r.y. .c.o.m.f.o.r.t.a.b.l.e. .w.i.t.h.,. .d.o. .y.o.u. .s.t.i.l.l. .r.e.m.e.m.b.e.r. .w.h.i.c.h.?. .J.o.y.:.Y.e.s.,. .y.o.u. .m.e.n.t.i.o.n.e.d. .t.h.a.t. .y.o.u.r. .s.p.o.u.s.e. .m.a.y. .b.e. .c.h.e.a.t.i.n.g. .o.n. .y.o.u... .H.o.w. .w.o.u.l.d. .y.o.u. .l.i.k.e. .t.o. .a.p.p.r.o.a.c.h. .t.h.i.s. .c.o.n.v.e.r.s.a.t.i.o.n. .w.i.t.h. .y.o.u.r. .m.o.m.?. . . .P.a.t.i.e.n.t.:.t.e.l.l. .h.e.r. .a.b.o.u.t. .m.y. .s.u.s.p.i.c.i.s.i.o.n. .i. .g.u.e.s.s. .J.o.y.:.I.t. .c.a.n. .b.e. .d.i.f.f.i.c.u.l.t. .t.o. .b.r.i.n.g. .u.p. .a. .t.o.p.i.c. .l.i.k.e. .t.h.i.s.,. .b.u.t. .i.t.'.s. .i.m.p.o.r.t.a.n.t. .t.h.a.t. .y.o.u. .h.a.v.e. .a.n. .o.p.e.n. .c.o.n.v.e.r.s.a.t.i.o.n. .w.i.t.h. .h.e.r... .W.o.u.l.d. .y.o.u. .l.i.k.e. .a.n.y. .a.d.v.i.c.e. .o.n. .h.o.w. .t.o. .s.t.a.r.t. .t.h.e. .c.o.n.v.e.r.s.a.t.i.o.n.?. . . .P.a.t.i.e.n.t.:.y.e.s. .p.l.e.a.s.e. .J.o.y.:.I.t. .c.a.n. .h.e.l.p. .t.o. .s.t.a.r.t. .b.y. .l.e.t.t.i.n.g. .y.o.u.r. .m.o.m. .k.n.o.w. .w.h.y. .y.o.u. .d.e.c.i.d.e.d. .t.o. .t.a.l.k. .t.o. .h.e.r. .a.b.o.u.t. .t.h.i.s... .S.h.a.r.i.n.g. .h.o.w. .y.o.u. .a.r.e. .f.e.e.l.i.n.g. .a.n.d. .a.s.k.i.n.g. .f.o.r. .h.e.r. .a.d.v.i.c.e. .m.i.g.h.t. .b.e. .a. .g.o.o.d. .w.a.y. .t.o. .o.p.e.n. .t.h.e. .c.o.n.v.e.r.s.a.t.i.o.n... .I.'.m. .h.e.r.e. .i.f. .y.o.u. .n.e.e.d. .a.n.y.t.h.i.n.g. .e.l.s.e. .b.e.f.o.r.e. .o.r. .a.f.t.e.r. .s.p.e.a.k.i.n.g. .w.i.t.h. .y.o.u.r. .m.o.m..\"]\n"
     ]
    }
   ],
   "source": [
    "def split_input_string(input_string: list, tokenizer, max_length):\n",
    "    # Initialize the list to store the split strings\n",
    "    split_strings = []\n",
    "\n",
    "    # Split the input string into sentences\n",
    "    sentences = input_string\n",
    "    #sentences = input_string.split(\".\")\n",
    "\n",
    "    # Loop through each sentence\n",
    "    i = 0\n",
    "    while i < len(sentences):\n",
    "        # Initialize the current string with the first sentence\n",
    "        curr_string = sentences[i]\n",
    "\n",
    "        # Keep adding sentences until the current string is longer than the maximum length\n",
    "        i += 1\n",
    "        while i < len(sentences) and len(tokenizer.encode(curr_string + \".\" + sentences[i], max_length=max_length)) <= max_length:\n",
    "            curr_string += \".\" + sentences[i]\n",
    "            i += 1\n",
    "\n",
    "        # Add the current string to the list of split strings\n",
    "        split_strings.append(curr_string)\n",
    "\n",
    "    # Return the list of split strings\n",
    "    return split_strings\n",
    "\n",
    "# Example usage\n",
    "input_string = \"This is a sample input string. It can be quite long. This function splits the input string into parts, each of which is no longer than the maximum length defined by the tokenizer and each of which ends on a full stop.\"\n",
    "max_length = 512\n",
    "split_strings = split_input_string(test3_string, tokenizer, max_length)\n",
    "print(split_strings)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 97,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "1"
      ]
     },
     "execution_count": 97,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(split_strings)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "metadata": {},
   "outputs": [],
   "source": [
    "import re \n",
    "\n",
    "def split(input: str) -> list:\n",
    "    tokenized = tokenizer(test, return_tensors='pt')\n",
    "    parts = (len(tokenized[0]) // 500) + 1\n",
    "    words_each_part = len(input.split()) // parts\n",
    "    print(words_each_part)\n",
    "    sentences = re.split(r'(?<=[.!?]) +', input)\n",
    "    # count the number of words in each sentence\n",
    "    words = [len(i.split()) for i in sentences]\n",
    "    print(words)\n",
    "\n",
    "    return parts, sentences"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 64,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'input_ids': [0, 7568, 9, 5, 31730, 36, 13080, 687, 43, 16, 10, 1537, 1668, 14, 8561, 5, 2182, 20111, 467, 4, 85, 18, 67, 373, 43683, 833, 1668, 8, 253, 11174, 13700, 1668, 4, 50118, 50118, 13112, 21113, 34126, 13162, 16, 5, 144, 1537, 28667, 9, 31730, 1668, 4, 50118, 50118, 1106, 47, 33, 57, 149, 5, 604, 1517, 17498, 6, 143, 34126, 13162, 16, 1687, 27034, 4, 318, 47, 33, 45, 648, 57, 149, 5, 604, 1517, 17498, 6, 5425, 13162, 189, 680, 13162, 227, 110, 5788, 4, 50118, 50118, 1185, 197, 1994, 7, 110, 12571, 25, 1010, 25, 678, 114, 47, 676, 143, 5425, 34126, 13162, 4, 616, 24, 18, 3752, 7, 28, 1726, 30, 31730, 1668, 6, 24, 18, 275, 7, 28, 686, 4, 50118, 50118, 12861, 12571, 40, 10154, 47, 8, 1394, 59, 110, 5298, 4, 252, 40, 9115, 47, 7, 10, 6857, 13, 617, 3457, 114, 51, 1985, 47, 189, 33, 10, 1473, 936, 6, 50, 114, 51, 32, 17118, 59, 10, 9726, 4, 50118, 50118, 347, 20126, 9, 5, 31730, 36, 13080, 687, 43, 16, 10, 1537, 1668, 14, 8561, 5, 2182, 20111, 467, 4, 85, 18, 67, 373, 43683, 833, 1668, 8, 253, 11174, 13700, 1668, 4, 50118, 50118, 13112, 21113, 34126, 13162, 16, 5, 144, 1537, 28667, 9, 31730, 1668, 4, 50118, 50118, 1106, 47, 33, 57, 149, 5, 604, 1517, 17498, 6, 143, 34126, 13162, 16, 1687, 27034, 4, 318, 47, 33, 45, 648, 57, 149, 5, 604, 1517, 17498, 6, 5425, 13162, 189, 680, 13162, 227, 110, 5788, 4, 50118, 50118, 1185, 197, 1994, 7, 110, 12571, 25, 1010, 25, 678, 114, 47, 676, 143, 5425, 34126, 13162, 4, 616, 24, 18, 3752, 7, 28, 1726, 30, 31730, 1668, 6, 24, 18, 275, 7, 28, 686, 4, 50118, 50118, 12861, 12571, 40, 10154, 47, 8, 1394, 59, 110, 5298, 4, 252, 40, 9115, 47, 7, 10, 6857, 13, 617, 3457, 114, 51, 1985, 47, 189, 33, 10, 1473, 936, 6, 50, 114, 51, 32, 17118, 59, 10, 9726, 4, 50118, 50118, 347, 20126, 9, 5, 31730, 36, 13080, 687, 43, 16, 10, 1537, 1668, 14, 8561, 5, 2182, 20111, 467, 4, 85, 18, 67, 373, 43683, 833, 1668, 8, 253, 11174, 13700, 1668, 4, 50118, 50118, 13112, 21113, 34126, 13162, 16, 5, 144, 1537, 28667, 9, 31730, 1668, 4, 50118, 50118, 1106, 47, 33, 57, 149, 5, 604, 1517, 17498, 6, 143, 34126, 13162, 16, 1687, 27034, 4, 318, 47, 33, 45, 648, 57, 149, 5, 604, 1517, 17498, 6, 5425, 13162, 189, 680, 13162, 227, 110, 5788, 4, 50118, 50118, 1185, 197, 1994, 7, 110, 12571, 25, 1010, 25, 678, 114, 47, 676, 143, 5425, 34126, 13162, 4, 616, 24, 18, 3752, 7, 28, 1726, 30, 31730, 1668, 6, 24, 18, 275, 7, 28, 686, 4, 50118, 50118, 12861, 12571, 40, 10154, 47, 8, 1394, 59, 110, 5298, 4, 252, 40, 9115, 47, 7, 10, 6857, 13, 617, 3457, 114, 51, 1985, 47, 189, 33, 10, 1473, 936, 6, 50, 114, 51, 32, 17118, 59, 10, 9726, 4, 50118, 50118, 347, 20126, 9, 5, 31730, 36, 13080, 687, 43, 16, 10, 1537, 1668, 14, 8561, 5, 2182, 20111, 467, 4, 85, 18, 67, 373, 43683, 833, 1668, 8, 253, 11174, 13700, 1668, 4, 50118, 50118, 13112, 21113, 34126, 13162, 16, 5, 144, 1537, 28667, 9, 31730, 1668, 4, 50118, 50118, 1106, 47, 33, 57, 149, 5, 604, 1517, 17498, 6, 143, 34126, 13162, 16, 1687, 27034, 4, 318, 47, 33, 45, 648, 57, 149, 5, 604, 1517, 17498, 6, 5425, 13162, 189, 680, 13162, 227, 110, 5788, 4, 50118, 50118, 1185, 197, 1994, 7, 110, 12571, 25, 1010, 25, 678, 114, 47, 676, 143, 5425, 34126, 13162, 4, 616, 24, 18, 3752, 7, 28, 1726, 30, 31730, 1668, 6, 24, 18, 275, 7, 28, 686, 4, 50118, 50118, 12861, 12571, 40, 10154, 47, 8, 1394, 59, 110, 5298, 4, 252, 40, 9115, 47, 7, 10, 6857, 13, 617, 3457, 114, 51, 1985, 47, 189, 33, 10, 1473, 936, 6, 50, 114, 51, 32, 17118, 59, 10, 9726, 4, 50140, 50140, 1437, 2], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}"
      ]
     },
     "execution_count": 64,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "tokenizer = AutoTokenizer.from_pretrained(MODEL)\n",
    "tokens = tokenizer(test)\n",
    "tokens"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 55,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "['ĠCancer', 'Ġof', 'Ġthe', 'Ġwomb', 'Ġ(', 'uter', 'us', ')', 'Ġis', 'Ġa', 'Ġcommon', 'Ġcancer', 'Ġthat', 'Ġaffects', 'Ġthe', 'Ġfemale', 'Ġreproductive', 'Ġsystem', '.', 'ĠIt', \"'s\", 'Ġalso', 'Ġcalled', 'Ġuter', 'ine', 'Ġcancer', 'Ġand', 'Ġend', 'omet', 'rial', 'Ġcancer', '.', 'Ċ', 'Ċ', 'Ab', 'normal', 'Ġvaginal', 'Ġbleeding', 'Ġis', 'Ġthe', 'Ġmost', 'Ġcommon', 'Ġsymptom', 'Ġof', 'Ġwomb', 'Ġcancer', '.', 'Ċ', 'Ċ', 'If', 'Ġyou', 'Ġhave', 'Ġbeen', 'Ġthrough', 'Ġthe', 'Ġmen', 'op', 'ause', ',', 'Ġany', 'Ġvaginal', 'Ġbleeding', 'Ġis', 'Ġconsidered', 'Ġabnormal', '.', 'ĠIf', 'Ġyou', 'Ġhave', 'Ġnot', 'Ġyet', 'Ġbeen', 'Ġthrough', 'Ġthe', 'Ġmen', 'op', 'ause', ',', 'Ġunusual', 'Ġbleeding', 'Ġmay', 'Ġinclude', 'Ġbleeding', 'Ġbetween', 'Ġyour', 'Ġperiods', '.', 'Ċ', 'Ċ', 'You', 'Ġshould', 'Ġspeak', 'Ġto', 'Ġyour', 'ĠGP', 'Ġas', 'Ġsoon', 'Ġas', 'Ġpossible', 'Ġif', 'Ġyou', 'Ġexperience', 'Ġany', 'Ġunusual', 'Ġvaginal', 'Ġbleeding', '.', 'ĠWhile', 'Ġit', \"'s\", 'Ġunlikely', 'Ġto', 'Ġbe', 'Ġcaused', 'Ġby', 'Ġwomb', 'Ġcancer', ',', 'Ġit', \"'s\", 'Ġbest', 'Ġto', 'Ġbe', 'Ġsure', '.', 'Ċ', 'Ċ', 'Your', 'ĠGP', 'Ġwill', 'Ġexamine', 'Ġyou', 'Ġand', 'Ġask', 'Ġabout', 'Ġyour', 'Ġsymptoms', '.', 'ĠThey', 'Ġwill', 'Ġrefer', 'Ġyou', 'Ġto', 'Ġa', 'Ġspecialist', 'Ġfor', 'Ġfurther', 'Ġtests', 'Ġif', 'Ġthey', 'Ġsuspect', 'Ġyou', 'Ġmay', 'Ġhave', 'Ġa', 'Ġserious', 'Ġproblem', ',', 'Ġor', 'Ġif', 'Ġthey', 'Ġare', 'Ġunsure', 'Ġabout', 'Ġa', 'Ġdiagnosis', '.', 'Ċ', 'Ċ', 'C', 'ancer', 'Ġof', 'Ġthe', 'Ġwomb', 'Ġ(', 'uter', 'us', ')', 'Ġis', 'Ġa', 'Ġcommon', 'Ġcancer', 'Ġthat', 'Ġaffects', 'Ġthe', 'Ġfemale', 'Ġreproductive', 'Ġsystem', '.', 'ĠIt', \"'s\", 'Ġalso', 'Ġcalled', 'Ġuter', 'ine', 'Ġcancer', 'Ġand', 'Ġend', 'omet', 'rial', 'Ġcancer', '.', 'Ċ', 'Ċ', 'Ab', 'normal', 'Ġvaginal', 'Ġbleeding', 'Ġis', 'Ġthe', 'Ġmost', 'Ġcommon', 'Ġsymptom', 'Ġof', 'Ġwomb', 'Ġcancer', '.', 'Ċ', 'Ċ', 'If', 'Ġyou', 'Ġhave', 'Ġbeen', 'Ġthrough', 'Ġthe', 'Ġmen', 'op', 'ause', ',', 'Ġany', 'Ġvaginal', 'Ġbleeding', 'Ġis', 'Ġconsidered', 'Ġabnormal', '.', 'ĠIf', 'Ġyou', 'Ġhave', 'Ġnot', 'Ġyet', 'Ġbeen', 'Ġthrough', 'Ġthe', 'Ġmen', 'op', 'ause', ',', 'Ġunusual', 'Ġbleeding', 'Ġmay', 'Ġinclude', 'Ġbleeding', 'Ġbetween', 'Ġyour', 'Ġperiods', '.', 'Ċ', 'Ċ', 'You', 'Ġshould', 'Ġspeak', 'Ġto', 'Ġyour', 'ĠGP', 'Ġas', 'Ġsoon', 'Ġas', 'Ġpossible', 'Ġif', 'Ġyou', 'Ġexperience', 'Ġany', 'Ġunusual', 'Ġvaginal', 'Ġbleeding', '.', 'ĠWhile', 'Ġit', \"'s\", 'Ġunlikely', 'Ġto', 'Ġbe', 'Ġcaused', 'Ġby', 'Ġwomb', 'Ġcancer', ',', 'Ġit', \"'s\", 'Ġbest', 'Ġto', 'Ġbe', 'Ġsure', '.', 'Ċ', 'Ċ', 'Your', 'ĠGP', 'Ġwill', 'Ġexamine', 'Ġyou', 'Ġand', 'Ġask', 'Ġabout', 'Ġyour', 'Ġsymptoms', '.', 'ĠThey', 'Ġwill', 'Ġrefer', 'Ġyou', 'Ġto', 'Ġa', 'Ġspecialist', 'Ġfor', 'Ġfurther', 'Ġtests', 'Ġif', 'Ġthey', 'Ġsuspect', 'Ġyou', 'Ġmay', 'Ġhave', 'Ġa', 'Ġserious', 'Ġproblem', ',', 'Ġor', 'Ġif', 'Ġthey', 'Ġare', 'Ġunsure', 'Ġabout', 'Ġa', 'Ġdiagnosis', '.', 'Ċ', 'Ċ', 'C', 'ancer', 'Ġof', 'Ġthe', 'Ġwomb', 'Ġ(', 'uter', 'us', ')', 'Ġis', 'Ġa', 'Ġcommon', 'Ġcancer', 'Ġthat', 'Ġaffects', 'Ġthe', 'Ġfemale', 'Ġreproductive', 'Ġsystem', '.', 'ĠIt', \"'s\", 'Ġalso', 'Ġcalled', 'Ġuter', 'ine', 'Ġcancer', 'Ġand', 'Ġend', 'omet', 'rial', 'Ġcancer', '.', 'Ċ', 'Ċ', 'Ab', 'normal', 'Ġvaginal', 'Ġbleeding', 'Ġis', 'Ġthe', 'Ġmost', 'Ġcommon', 'Ġsymptom', 'Ġof', 'Ġwomb', 'Ġcancer', '.', 'Ċ', 'Ċ', 'If', 'Ġyou', 'Ġhave', 'Ġbeen', 'Ġthrough', 'Ġthe', 'Ġmen', 'op', 'ause', ',', 'Ġany', 'Ġvaginal', 'Ġbleeding', 'Ġis', 'Ġconsidered', 'Ġabnormal', '.', 'ĠIf', 'Ġyou', 'Ġhave', 'Ġnot', 'Ġyet', 'Ġbeen', 'Ġthrough', 'Ġthe', 'Ġmen', 'op', 'ause', ',', 'Ġunusual', 'Ġbleeding', 'Ġmay', 'Ġinclude', 'Ġbleeding', 'Ġbetween', 'Ġyour', 'Ġperiods', '.', 'Ċ', 'Ċ', 'You', 'Ġshould', 'Ġspeak', 'Ġto', 'Ġyour', 'ĠGP', 'Ġas', 'Ġsoon', 'Ġas', 'Ġpossible', 'Ġif', 'Ġyou', 'Ġexperience', 'Ġany', 'Ġunusual', 'Ġvaginal', 'Ġbleeding', '.', 'ĠWhile', 'Ġit', \"'s\", 'Ġunlikely', 'Ġto', 'Ġbe', 'Ġcaused', 'Ġby', 'Ġwomb', 'Ġcancer', ',', 'Ġit', \"'s\", 'Ġbest', 'Ġto', 'Ġbe', 'Ġsure', '.', 'Ċ', 'Ċ', 'Your', 'ĠGP', 'Ġwill', 'Ġexamine', 'Ġyou', 'Ġand', 'Ġask', 'Ġabout', 'Ġyour', 'Ġsymptoms', '.', 'ĠThey', 'Ġwill', 'Ġrefer', 'Ġyou', 'Ġto', 'Ġa', 'Ġspecialist', 'Ġfor', 'Ġfurther', 'Ġtests', 'Ġif', 'Ġthey', 'Ġsuspect', 'Ġyou', 'Ġmay', 'Ġhave', 'Ġa', 'Ġserious', 'Ġproblem', ',', 'Ġor', 'Ġif', 'Ġthey', 'Ġare', 'Ġunsure', 'Ġabout', 'Ġa', 'Ġdiagnosis', '.', 'Ċ', 'Ċ', 'C', 'ancer', 'Ġof', 'Ġthe', 'Ġwomb', 'Ġ(', 'uter', 'us', ')', 'Ġis', 'Ġa', 'Ġcommon', 'Ġcancer', 'Ġthat', 'Ġaffects', 'Ġthe', 'Ġfemale', 'Ġreproductive', 'Ġsystem', '.', 'ĠIt', \"'s\", 'Ġalso', 'Ġcalled', 'Ġuter', 'ine', 'Ġcancer', 'Ġand', 'Ġend', 'omet', 'rial', 'Ġcancer', '.', 'Ċ', 'Ċ', 'Ab', 'normal', 'Ġvaginal', 'Ġbleeding', 'Ġis', 'Ġthe', 'Ġmost', 'Ġcommon', 'Ġsymptom', 'Ġof', 'Ġwomb', 'Ġcancer', '.', 'Ċ', 'Ċ', 'If', 'Ġyou', 'Ġhave', 'Ġbeen', 'Ġthrough', 'Ġthe', 'Ġmen', 'op', 'ause', ',', 'Ġany', 'Ġvaginal', 'Ġbleeding', 'Ġis', 'Ġconsidered', 'Ġabnormal', '.', 'ĠIf', 'Ġyou', 'Ġhave', 'Ġnot', 'Ġyet', 'Ġbeen', 'Ġthrough', 'Ġthe', 'Ġmen', 'op', 'ause', ',', 'Ġunusual', 'Ġbleeding', 'Ġmay', 'Ġinclude', 'Ġbleeding', 'Ġbetween', 'Ġyour', 'Ġperiods', '.', 'Ċ', 'Ċ', 'You', 'Ġshould', 'Ġspeak', 'Ġto', 'Ġyour', 'ĠGP', 'Ġas', 'Ġsoon', 'Ġas', 'Ġpossible', 'Ġif', 'Ġyou', 'Ġexperience', 'Ġany', 'Ġunusual', 'Ġvaginal', 'Ġbleeding', '.', 'ĠWhile', 'Ġit', \"'s\", 'Ġunlikely', 'Ġto', 'Ġbe', 'Ġcaused', 'Ġby', 'Ġwomb', 'Ġcancer', ',', 'Ġit', \"'s\", 'Ġbest', 'Ġto', 'Ġbe', 'Ġsure', '.', 'Ċ', 'Ċ', 'Your', 'ĠGP', 'Ġwill', 'Ġexamine', 'Ġyou', 'Ġand', 'Ġask', 'Ġabout', 'Ġyour', 'Ġsymptoms', '.', 'ĠThey', 'Ġwill', 'Ġrefer', 'Ġyou', 'Ġto', 'Ġa', 'Ġspecialist', 'Ġfor', 'Ġfurther', 'Ġtests', 'Ġif', 'Ġthey', 'Ġsuspect', 'Ġyou', 'Ġmay', 'Ġhave', 'Ġa', 'Ġserious', 'Ġproblem', ',', 'Ġor', 'Ġif', 'Ġthey', 'Ġare', 'Ġunsure', 'Ġabout', 'Ġa', 'Ġdiagnosis', '.', 'ĊĊ', 'ĊĊ', 'Ġ']\n"
     ]
    },
    {
     "ename": "KeyboardInterrupt",
     "evalue": "",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mKeyboardInterrupt\u001b[0m                         Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[55], line 26\u001b[0m\n\u001b[1;32m     16\u001b[0m         \u001b[39m#         break\u001b[39;00m\n\u001b[1;32m     17\u001b[0m         \u001b[39m#     end += 1\u001b[39;00m\n\u001b[1;32m     18\u001b[0m \n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m     21\u001b[0m         \u001b[39m# start = end + 1\u001b[39;00m\n\u001b[1;32m     22\u001b[0m         \u001b[39m# end = start\u001b[39;00m\n\u001b[1;32m     24\u001b[0m     \u001b[39mreturn\u001b[39;00m tokenized_parts\n\u001b[0;32m---> 26\u001b[0m tokenize_long_sentence(test, \u001b[39m500\u001b[39;49m)\n",
      "Cell \u001b[0;32mIn[55], line 13\u001b[0m, in \u001b[0;36mtokenize_long_sentence\u001b[0;34m(long_sentence, max_tokens)\u001b[0m\n\u001b[1;32m     10\u001b[0m end \u001b[39m=\u001b[39m \u001b[39m0\u001b[39m\n\u001b[1;32m     12\u001b[0m \u001b[39mwhile\u001b[39;00m end \u001b[39m<\u001b[39m \u001b[39mlen\u001b[39m(tokens):\n\u001b[0;32m---> 13\u001b[0m     \u001b[39mwhile\u001b[39;00m end \u001b[39m<\u001b[39m \u001b[39mlen\u001b[39m(tokens) \u001b[39mand\u001b[39;00m end \u001b[39m-\u001b[39;49m start \u001b[39m<\u001b[39;49m\u001b[39m=\u001b[39;49m max_tokens:\n\u001b[1;32m     14\u001b[0m         \u001b[39mif\u001b[39;00m tokens[end] \u001b[39min\u001b[39;00m [\u001b[39m\"\u001b[39m\u001b[39m.\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39m?\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39m!\u001b[39m\u001b[39m\"\u001b[39m]:\n\u001b[1;32m     15\u001b[0m             \u001b[39mprint\u001b[39m(tokens[end])\n",
      "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
     ]
    }
   ],
   "source": [
    "from transformers import AutoTokenizer\n",
    "\n",
    "def tokenize_long_sentence(long_sentence, max_tokens):\n",
    "    tokenizer = AutoTokenizer.from_pretrained(MODEL)\n",
    "    tokens = tokenizer.tokenize(long_sentence)\n",
    "    print(tokens)\n",
    "    tokenized_parts = []\n",
    "\n",
    "    start = 0\n",
    "    end = 0\n",
    "\n",
    "    while end < len(tokens):\n",
    "        while end < len(tokens) and end - start <= max_tokens:\n",
    "            if tokens[end] in [\".\", \"?\", \"!\"]:\n",
    "                print(tokens[end])\n",
    "        #         break\n",
    "        #     end += 1\n",
    "\n",
    "        # part = tokens[start:end + 1]\n",
    "        # tokenized_parts.append(part)\n",
    "        # start = end + 1\n",
    "        # end = start\n",
    "\n",
    "    return tokenized_parts\n",
    "\n",
    "tokenize_long_sentence(test, 500)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "chatbot",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.15"
  },
  "orig_nbformat": 4,
  "vscode": {
   "interpreter": {
    "hash": "9798c78c52b861f9442ea63a21901b586ae2f2169fa92d94b4091cc5bab62e04"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}