import gradio as gr import outlines import transformers import torch """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ pipe = transformers.pipeline("text-generation", "HuggingFaceTB/SmolLM-1.7B-Instruct", torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32) outlines_tokenizer = outlines.models.TransformerTokenizer(pipe.tokenizer) ### TODO 1: use outliunes with a transformer model made directly ### TODO 2: use a cfg def string_to_acrostic_grammar(s, dash_initial=True): # this will convert a string to a CFG grammar chars = filter(str.isalpha, s.upper()) grammar_rules = [('"- " ' if dash_initial else '') + f'"{char}" /[^-\\r\\n]+/ "\\n"' for char in chars] return "?start: " + " ".join(grammar_rules) def is_this_prompt_a_list(prompt): return False # ask the model if the prompt is a list, by constraining the generation to yes or no about a question whether the prompt is a list question = f'This is a prompt that you have been asked to answer:\n\n```\n{prompt}\n```\n\nIs this prompt asking for a list of items, instead of a story? Begin your answer with "Yes" if asking for a list, otherwise "No", and then give an explanation of why.' grammar = '?start: ("Yes" | "No")' cfg_logits_processor = outlines.processors.CFGLogitsProcessor(grammar, outlines_tokenizer) output = pipe([{"role": "user", "content": question}], logits_processor=transformers.LogitsProcessorList([cfg_logits_processor]), max_new_tokens=10,) # output = pipe([{"role": "system", "content": "You are a helpful assistant who answers in one-word answers."}, {"role": "user", "content": question}], max_new_tokens=10,) response = output[0]['generated_text'][-1]['content'] print("is this prompt a list?", response) return response == "Yes" def respond( message, history: list[tuple[str, str]], system_message, acrostic, max_tokens, temperature, top_p, ): print({"message": message, "history": history, "system_message": system_message, "acrostic": acrostic, "max_tokens": max_tokens, "temperature": temperature, "top_p": top_p}) # grammar = "\n".join(['?start: item item item','?item: "- " /[^-\\r\\n]+/ "\\n"']) grammar = string_to_acrostic_grammar(acrostic, dash_initial=is_this_prompt_a_list(message)) two_items_logits_processor = outlines.processors.CFGLogitsProcessor( grammar , outlines_tokenizer ) output = pipe([{"role": "user", "content": message}], logits_processor=transformers.LogitsProcessorList([two_items_logits_processor]), max_new_tokens=max_tokens,) print(output) response = output[0]['generated_text'][-1]['content'] # messages = [{"role": "system", "content": system_message}] # for val in history: # if val[0]: # messages.append({"role": "user", "content": val[0]}) # if val[1]: # messages.append({"role": "assistant", "content": val[1]}) # messages.append({"role": "user", "content": message}) yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Textbox(value="I love you", label="acrostic"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Maximum new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()