File size: 11,890 Bytes
a02aab5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1eb15c8
 
 
 
 
 
 
 
 
 
a02aab5
 
 
 
 
 
 
 
 
 
51e64b6
a02aab5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
489a24b
a02aab5
 
 
 
 
 
 
 
 
0c6b2bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e72f6a
 
 
 
 
a4a6839
 
 
 
 
 
0c6b2bb
 
 
 
a02aab5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1eb15c8
 
 
 
a02aab5
1eb15c8
a02aab5
 
 
 
 
 
 
 
0c6b2bb
6e72f6a
a4a6839
0c6b2bb
a02aab5
 
 
 
 
 
 
 
c90aafb
 
663f0b2
a02aab5
c90aafb
a02aab5
 
c90aafb
 
a02aab5
 
 
 
c90aafb
a02aab5
 
 
 
 
 
 
1eb15c8
6f13a14
 
 
 
 
1eb15c8
a02aab5
 
 
 
 
 
0c6b2bb
 
 
1eb15c8
6e72f6a
a4a6839
 
0c6b2bb
 
a02aab5
6f13a14
 
 
 
 
 
a02aab5
 
 
 
 
 
 
 
0c6b2bb
6e72f6a
a4a6839
0c6b2bb
a02aab5
 
 
 
 
 
 
 
0324026
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
from typing import Optional, Tuple

import gradio as gr
import pandas as pd
from pathlib import Path
import seaborn as sns
import matplotlib.pyplot as plt
from wordcloud import WordCloud
import numpy as np

def _rename_columns(df: pd.DataFrame, is_tournament: bool) -> pd.DataFrame:
    columns = {
        "Rating": "rating",
        "Result": "result",
        "Scores": "scores",
        "Opponent": "opponent",
        "OpponentRating": "opponent_rating",
    }

    if is_tournament:
        columns.update({
            "TournamentStartDate": "tournament_start_date",
            "TournamentEndDate": "tournament_end_date",
            " Touranament": "tournament",
        })
    else:
        columns.update({
            "EventDate": "event_date",
            "LeagueName": "league_name"
        })

    return df.rename(columns=columns)


def _fix_dtypes(df: pd.DataFrame, is_tournament: bool) -> pd.DataFrame:
    if is_tournament:
        df["tournament_start_date"] = pd.to_datetime(df["tournament_start_date"])
        df["tournament_end_date"] = pd.to_datetime(df["tournament_end_date"])
        df["tournament"] = df["tournament"].astype('category')
    else:
        df["event_date"] = pd.to_datetime(df["event_date"])
        df["league_name"] = df["league_name"].astype('string')

    df["rating"] = df["rating"].astype('int')
    df["result"] = df["result"].astype('category')
    df["scores"] = df["scores"].astype('string')
    df["opponent"] = df["opponent"].astype('category')
    df["opponent_rating"] = df["opponent_rating"].astype('int')

    return df

def make_df_columns_readable(df: Optional[pd.DataFrame], is_tournament: bool) -> Optional[pd.DataFrame]:
    """Make a data frame's columns human-readable."""
    if df is None:
        return None

    if not is_tournament:
        df = df.rename(columns={"league_name": "league"})

    df = df.rename(columns=lambda c: " ".join(c.capitalize().split("_")))
    return df

def _check_match_type(match_type: str) -> str:
    allowed_match_types = {"tournament", "league"}
    if match_type not in allowed_match_types:
        raise ValueError(
            f"The only supported match types are {allowed_match_types}. Found match type of '{match_type}'.")
    return match_type


def get_num_competitions_played(df: pd.DataFrame, is_tournament: bool) -> int:
    key_name = "tournament_end_date" if is_tournament else "event_date"
    return df[key_name].nunique()


def get_matches_per_competition_fig(df: pd.DataFrame, is_tournament: bool):
    fig = plt.figure()
    plt.title('Matches per competition')
    sns.histplot(df.groupby('tournament' if is_tournament else "event_date").size())
    plt.xlabel('Number of matches in competition')
    return fig


def get_competition_name_word_cloud_fig(df: pd.DataFrame, is_tournament: bool):
    fig = plt.figure()
    key_name = "tournament" if is_tournament else "league_name"
    wordcloud = WordCloud().generate(" ".join(df[key_name].values.tolist()))
    plt.imshow(wordcloud, interpolation='bilinear')
    plt.axis("off")
    return fig


def get_opponent_name_word_cloud_fig(df: pd.DataFrame):
    fig = plt.figure()
    wordcloud = WordCloud().generate(" ".join(df.opponent.values.tolist()))
    plt.imshow(wordcloud, interpolation='bilinear')
    plt.axis("off")
    return fig


def get_rating_over_time_fig(df: pd.DataFrame, is_tournament: bool):
    fig = plt.figure()
    plt.title('Rating over time')
    sns.lineplot(data=df,
                 x="tournament_end_date" if is_tournament else "event_date",
                 y="rating",
                 marker='.',
                 markersize=10)
    plt.xlabel('Competition date')
    plt.ylabel('Rating')
    return fig


def get_max_int(int_csv_str: str) -> int:
    """Get the max int from an int CSV."""
    ints = [int(i.strip()) for i in int_csv_str.split(',') if i]
    return max(ints)


def get_match_with_longest_game(df: pd.DataFrame, is_tournament: bool) -> Optional[pd.DataFrame]:
    if not is_tournament:
        return None
    return df.loc[[np.argmax(df.scores.apply(get_max_int))]]


def get_win_loss_record_str(group_df) -> str:
    if len(group_df) > 0:
        win_loss_counts = group_df.value_counts()
        n_wins = win_loss_counts.Won if hasattr(win_loss_counts, "Won") else 0
        n_losses = win_loss_counts.Lost if hasattr(win_loss_counts, "Lost") else 0
    else:
        n_wins = 0
        n_losses = 0

    return f"{n_wins}, {n_losses}"


def get_most_frequent_opponents(df: pd.DataFrame, top_n: int = 5) -> pd.DataFrame:
    df_with_opponents = df.loc[df.opponent != "-, -"]

    most_common_opponents_df = df_with_opponents.groupby('opponent').agg({"result": [get_win_loss_record_str, "size"]})
    most_common_opponents_df.columns = most_common_opponents_df.columns.get_level_values(1)
    most_common_opponents_df.rename({"get_win_loss_record_str": "Win/loss record", "size": "Number of matches"}, axis=1,
                                    inplace=True)
    most_common_opponents_df["Opponent"] = most_common_opponents_df.index
    return most_common_opponents_df.sort_values("Number of matches", ascending=False)[
        ["Opponent", "Number of matches", "Win/loss record"]].head(top_n)


def get_best_wins(df: pd.DataFrame, top_n: int = 5) -> pd.DataFrame:
    """Get the top-n wins sorted by opponent rating."""
    return df.loc[df.result == 'Won'].sort_values("opponent_rating", ascending=False).head(top_n)


def get_biggest_upsets(df: pd.DataFrame, top_n: int = 5) -> pd.DataFrame:
    """Get the top-n wins sorted by rating difference."""
    df['rating_difference'] = df['opponent_rating'] - df['rating']
    return df.loc[df.result == 'Won'].sort_values("rating_difference", ascending=False).head(top_n)


def get_highest_rated_opponent(df: pd.DataFrame) -> pd.DataFrame:
    return df.iloc[df.opponent_rating.idxmax()].to_frame().transpose()


def get_opponent_rating_distr_fig(df: pd.DataFrame):
    fig = plt.figure()
    plt.title('Opponent rating distribution')
    sns.histplot(data=df, x="opponent_rating", hue='result')
    plt.xlabel('Opponent rating')
    return fig


def get_opponent_rating_dist_over_time_fig(df: pd.DataFrame, is_tournament: bool):
    fig, ax = plt.subplots(figsize=(12, 8))
    plt.title(f'Opponent rating distribution over time')
    x_key_name = "tournament_end_date" if is_tournament else "event_date"
    sns.violinplot(data=df,
                   x=df[x_key_name].dt.year,
                   y="opponent_rating",
                   hue="result",
                   split=True,
                   inner='points',
                   cut=1,
                   ax=ax)
    plt.xlabel('Competition year')
    plt.ylabel('Opponent rating')
    return fig


def load_match_df(file_path: Path) -> Tuple[pd.DataFrame, bool]:
    match_type = _check_match_type(file_path.name.split('_')[0])
    is_tournament = match_type == "tournament"

    df = pd.read_csv(file_path)
    df = _rename_columns(df, is_tournament)
    df = _fix_dtypes(df, is_tournament)

    return df, is_tournament


def usatt_rating_analyzer(file_obj):
    # Load data.
    df, is_tournament = load_match_df(Path(file_obj.name))

    # Create outputs.
    n_competitions_played = get_num_competitions_played(df, is_tournament)
    n_matches_played = len(df)
    matches_per_competition_fig = get_matches_per_competition_fig(df, is_tournament)
    opponent_name_word_cloud_fig = get_opponent_name_word_cloud_fig(df)
    competition_name_word_cloud_fig = get_competition_name_word_cloud_fig(df, is_tournament)
    most_frequent_opponents = make_df_columns_readable(get_most_frequent_opponents(df), is_tournament)
    best_wins = make_df_columns_readable(get_best_wins(df), is_tournament)
    biggest_upsets = make_df_columns_readable(get_biggest_upsets(df), is_tournament)
    highest_rated_opponent = make_df_columns_readable(get_highest_rated_opponent(df), is_tournament)
    rating_over_time_fig = get_rating_over_time_fig(df, is_tournament)
    match_with_longest_game = make_df_columns_readable(get_match_with_longest_game(df, is_tournament), is_tournament)
    opponent_rating_distr_fig = get_opponent_rating_distr_fig(df)
    opponent_rating_dist_over_time_fig = get_opponent_rating_dist_over_time_fig(df, is_tournament)

    return (n_competitions_played,
            n_matches_played,
            matches_per_competition_fig,
            opponent_name_word_cloud_fig,
            competition_name_word_cloud_fig,
            most_frequent_opponents,
            best_wins,
            biggest_upsets,
            highest_rated_opponent,
            rating_over_time_fig,
            match_with_longest_game,
            opponent_rating_distr_fig,
            opponent_rating_dist_over_time_fig,
            )


with gr.Blocks() as demo:
    analyze_btn_title = "Analyze"
    gr.Markdown(f"""# USATT rating analyzer
    Analyze [USA table tennis](https://www.teamusa.org/usa-table-tennis) tournament and league results. 
    ## Downloading match results
    1. Make sure you are [logged in](https://usatt.simplycompete.com/login/auth) to your USATT account.
    2. Find the *active* player you wish to analyze (e.g.,  [Kanak Jha](https://usatt.simplycompete.com/userAccount/up/3431)).
    3. Under 'Tournaments' or 'Leagues', click *Download Tournament/League Match History*.
    ## Usage
    1. Simply add your tournament/league match history CSV file and click the "{analyze_btn_title}" button.
    """)
    with gr.Row():
        with gr.Column():
            input_file = gr.File(label='USATT Results File', file_types=['file'])
            btn = gr.Button(analyze_btn_title)

    with gr.Group():
        with gr.Row():
            with gr.Column():
                num_comps_box = gr.Textbox(lines=1, label="Number of competitions (tournaments/leagues) played")
            with gr.Column():
                num_matches_box = gr.Textbox(lines=1, label="Number of matches played")

        with gr.Row():
            with gr.Column():
                rating_over_time_plot = gr.Plot(show_label=False)
            with gr.Column():
                matches_per_comp_plot = gr.Plot(show_label=False)

        with gr.Row():
            with gr.Column():
                opponent_names_plot = gr.Plot(label="Opponent names")
            with gr.Column():
                comp_names_plot = gr.Plot(label="Competition names")

        with gr.Row():
            with gr.Column():
                most_frequent_opponents_gdf = gr.Dataframe(label="Most frequent opponents", max_rows=5)
                best_wins_gdf = gr.Dataframe(label="Best wins (matches won sorted by opponent post-competition rating)",
                                             max_rows=5)
                biggest_upsets_gdf = gr.Dataframe(label="Biggest upsets (matches won sorted by rating - opponent post-competition rating)",
                                                  max_rows=5)
                highest_rated_opponent_gdf = gr.Dataframe(label="Best opponent", max_rows=1)

        match_longest_game_gdf = gr.Dataframe(label="Match with longest game", max_rows=1)

        with gr.Row():
            with gr.Column():
                opponent_rating_dist_plot = gr.Plot(show_label=False)
            with gr.Column():
                opponent_rating_dist_over_time_plot = gr.Plot(show_label=False)

    inputs = [input_file]
    outputs = [
        num_comps_box,
        num_matches_box,
        matches_per_comp_plot,
        opponent_names_plot,
        comp_names_plot,
        most_frequent_opponents_gdf,
        best_wins_gdf,
        biggest_upsets_gdf,
        highest_rated_opponent_gdf,
        rating_over_time_plot,
        match_longest_game_gdf,
        opponent_rating_dist_plot,
        opponent_rating_dist_over_time_plot,
    ]

    btn.click(usatt_rating_analyzer, inputs=inputs, outputs=outputs)

if __name__ == "__main__":
    demo.launch()