File size: 11,890 Bytes
a02aab5 1eb15c8 a02aab5 51e64b6 a02aab5 489a24b a02aab5 0c6b2bb 6e72f6a a4a6839 0c6b2bb a02aab5 1eb15c8 a02aab5 1eb15c8 a02aab5 0c6b2bb 6e72f6a a4a6839 0c6b2bb a02aab5 c90aafb 663f0b2 a02aab5 c90aafb a02aab5 c90aafb a02aab5 c90aafb a02aab5 1eb15c8 6f13a14 1eb15c8 a02aab5 0c6b2bb 1eb15c8 6e72f6a a4a6839 0c6b2bb a02aab5 6f13a14 a02aab5 0c6b2bb 6e72f6a a4a6839 0c6b2bb a02aab5 0324026 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
from typing import Optional, Tuple
import gradio as gr
import pandas as pd
from pathlib import Path
import seaborn as sns
import matplotlib.pyplot as plt
from wordcloud import WordCloud
import numpy as np
def _rename_columns(df: pd.DataFrame, is_tournament: bool) -> pd.DataFrame:
columns = {
"Rating": "rating",
"Result": "result",
"Scores": "scores",
"Opponent": "opponent",
"OpponentRating": "opponent_rating",
}
if is_tournament:
columns.update({
"TournamentStartDate": "tournament_start_date",
"TournamentEndDate": "tournament_end_date",
" Touranament": "tournament",
})
else:
columns.update({
"EventDate": "event_date",
"LeagueName": "league_name"
})
return df.rename(columns=columns)
def _fix_dtypes(df: pd.DataFrame, is_tournament: bool) -> pd.DataFrame:
if is_tournament:
df["tournament_start_date"] = pd.to_datetime(df["tournament_start_date"])
df["tournament_end_date"] = pd.to_datetime(df["tournament_end_date"])
df["tournament"] = df["tournament"].astype('category')
else:
df["event_date"] = pd.to_datetime(df["event_date"])
df["league_name"] = df["league_name"].astype('string')
df["rating"] = df["rating"].astype('int')
df["result"] = df["result"].astype('category')
df["scores"] = df["scores"].astype('string')
df["opponent"] = df["opponent"].astype('category')
df["opponent_rating"] = df["opponent_rating"].astype('int')
return df
def make_df_columns_readable(df: Optional[pd.DataFrame], is_tournament: bool) -> Optional[pd.DataFrame]:
"""Make a data frame's columns human-readable."""
if df is None:
return None
if not is_tournament:
df = df.rename(columns={"league_name": "league"})
df = df.rename(columns=lambda c: " ".join(c.capitalize().split("_")))
return df
def _check_match_type(match_type: str) -> str:
allowed_match_types = {"tournament", "league"}
if match_type not in allowed_match_types:
raise ValueError(
f"The only supported match types are {allowed_match_types}. Found match type of '{match_type}'.")
return match_type
def get_num_competitions_played(df: pd.DataFrame, is_tournament: bool) -> int:
key_name = "tournament_end_date" if is_tournament else "event_date"
return df[key_name].nunique()
def get_matches_per_competition_fig(df: pd.DataFrame, is_tournament: bool):
fig = plt.figure()
plt.title('Matches per competition')
sns.histplot(df.groupby('tournament' if is_tournament else "event_date").size())
plt.xlabel('Number of matches in competition')
return fig
def get_competition_name_word_cloud_fig(df: pd.DataFrame, is_tournament: bool):
fig = plt.figure()
key_name = "tournament" if is_tournament else "league_name"
wordcloud = WordCloud().generate(" ".join(df[key_name].values.tolist()))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis("off")
return fig
def get_opponent_name_word_cloud_fig(df: pd.DataFrame):
fig = plt.figure()
wordcloud = WordCloud().generate(" ".join(df.opponent.values.tolist()))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis("off")
return fig
def get_rating_over_time_fig(df: pd.DataFrame, is_tournament: bool):
fig = plt.figure()
plt.title('Rating over time')
sns.lineplot(data=df,
x="tournament_end_date" if is_tournament else "event_date",
y="rating",
marker='.',
markersize=10)
plt.xlabel('Competition date')
plt.ylabel('Rating')
return fig
def get_max_int(int_csv_str: str) -> int:
"""Get the max int from an int CSV."""
ints = [int(i.strip()) for i in int_csv_str.split(',') if i]
return max(ints)
def get_match_with_longest_game(df: pd.DataFrame, is_tournament: bool) -> Optional[pd.DataFrame]:
if not is_tournament:
return None
return df.loc[[np.argmax(df.scores.apply(get_max_int))]]
def get_win_loss_record_str(group_df) -> str:
if len(group_df) > 0:
win_loss_counts = group_df.value_counts()
n_wins = win_loss_counts.Won if hasattr(win_loss_counts, "Won") else 0
n_losses = win_loss_counts.Lost if hasattr(win_loss_counts, "Lost") else 0
else:
n_wins = 0
n_losses = 0
return f"{n_wins}, {n_losses}"
def get_most_frequent_opponents(df: pd.DataFrame, top_n: int = 5) -> pd.DataFrame:
df_with_opponents = df.loc[df.opponent != "-, -"]
most_common_opponents_df = df_with_opponents.groupby('opponent').agg({"result": [get_win_loss_record_str, "size"]})
most_common_opponents_df.columns = most_common_opponents_df.columns.get_level_values(1)
most_common_opponents_df.rename({"get_win_loss_record_str": "Win/loss record", "size": "Number of matches"}, axis=1,
inplace=True)
most_common_opponents_df["Opponent"] = most_common_opponents_df.index
return most_common_opponents_df.sort_values("Number of matches", ascending=False)[
["Opponent", "Number of matches", "Win/loss record"]].head(top_n)
def get_best_wins(df: pd.DataFrame, top_n: int = 5) -> pd.DataFrame:
"""Get the top-n wins sorted by opponent rating."""
return df.loc[df.result == 'Won'].sort_values("opponent_rating", ascending=False).head(top_n)
def get_biggest_upsets(df: pd.DataFrame, top_n: int = 5) -> pd.DataFrame:
"""Get the top-n wins sorted by rating difference."""
df['rating_difference'] = df['opponent_rating'] - df['rating']
return df.loc[df.result == 'Won'].sort_values("rating_difference", ascending=False).head(top_n)
def get_highest_rated_opponent(df: pd.DataFrame) -> pd.DataFrame:
return df.iloc[df.opponent_rating.idxmax()].to_frame().transpose()
def get_opponent_rating_distr_fig(df: pd.DataFrame):
fig = plt.figure()
plt.title('Opponent rating distribution')
sns.histplot(data=df, x="opponent_rating", hue='result')
plt.xlabel('Opponent rating')
return fig
def get_opponent_rating_dist_over_time_fig(df: pd.DataFrame, is_tournament: bool):
fig, ax = plt.subplots(figsize=(12, 8))
plt.title(f'Opponent rating distribution over time')
x_key_name = "tournament_end_date" if is_tournament else "event_date"
sns.violinplot(data=df,
x=df[x_key_name].dt.year,
y="opponent_rating",
hue="result",
split=True,
inner='points',
cut=1,
ax=ax)
plt.xlabel('Competition year')
plt.ylabel('Opponent rating')
return fig
def load_match_df(file_path: Path) -> Tuple[pd.DataFrame, bool]:
match_type = _check_match_type(file_path.name.split('_')[0])
is_tournament = match_type == "tournament"
df = pd.read_csv(file_path)
df = _rename_columns(df, is_tournament)
df = _fix_dtypes(df, is_tournament)
return df, is_tournament
def usatt_rating_analyzer(file_obj):
# Load data.
df, is_tournament = load_match_df(Path(file_obj.name))
# Create outputs.
n_competitions_played = get_num_competitions_played(df, is_tournament)
n_matches_played = len(df)
matches_per_competition_fig = get_matches_per_competition_fig(df, is_tournament)
opponent_name_word_cloud_fig = get_opponent_name_word_cloud_fig(df)
competition_name_word_cloud_fig = get_competition_name_word_cloud_fig(df, is_tournament)
most_frequent_opponents = make_df_columns_readable(get_most_frequent_opponents(df), is_tournament)
best_wins = make_df_columns_readable(get_best_wins(df), is_tournament)
biggest_upsets = make_df_columns_readable(get_biggest_upsets(df), is_tournament)
highest_rated_opponent = make_df_columns_readable(get_highest_rated_opponent(df), is_tournament)
rating_over_time_fig = get_rating_over_time_fig(df, is_tournament)
match_with_longest_game = make_df_columns_readable(get_match_with_longest_game(df, is_tournament), is_tournament)
opponent_rating_distr_fig = get_opponent_rating_distr_fig(df)
opponent_rating_dist_over_time_fig = get_opponent_rating_dist_over_time_fig(df, is_tournament)
return (n_competitions_played,
n_matches_played,
matches_per_competition_fig,
opponent_name_word_cloud_fig,
competition_name_word_cloud_fig,
most_frequent_opponents,
best_wins,
biggest_upsets,
highest_rated_opponent,
rating_over_time_fig,
match_with_longest_game,
opponent_rating_distr_fig,
opponent_rating_dist_over_time_fig,
)
with gr.Blocks() as demo:
analyze_btn_title = "Analyze"
gr.Markdown(f"""# USATT rating analyzer
Analyze [USA table tennis](https://www.teamusa.org/usa-table-tennis) tournament and league results.
## Downloading match results
1. Make sure you are [logged in](https://usatt.simplycompete.com/login/auth) to your USATT account.
2. Find the *active* player you wish to analyze (e.g., [Kanak Jha](https://usatt.simplycompete.com/userAccount/up/3431)).
3. Under 'Tournaments' or 'Leagues', click *Download Tournament/League Match History*.
## Usage
1. Simply add your tournament/league match history CSV file and click the "{analyze_btn_title}" button.
""")
with gr.Row():
with gr.Column():
input_file = gr.File(label='USATT Results File', file_types=['file'])
btn = gr.Button(analyze_btn_title)
with gr.Group():
with gr.Row():
with gr.Column():
num_comps_box = gr.Textbox(lines=1, label="Number of competitions (tournaments/leagues) played")
with gr.Column():
num_matches_box = gr.Textbox(lines=1, label="Number of matches played")
with gr.Row():
with gr.Column():
rating_over_time_plot = gr.Plot(show_label=False)
with gr.Column():
matches_per_comp_plot = gr.Plot(show_label=False)
with gr.Row():
with gr.Column():
opponent_names_plot = gr.Plot(label="Opponent names")
with gr.Column():
comp_names_plot = gr.Plot(label="Competition names")
with gr.Row():
with gr.Column():
most_frequent_opponents_gdf = gr.Dataframe(label="Most frequent opponents", max_rows=5)
best_wins_gdf = gr.Dataframe(label="Best wins (matches won sorted by opponent post-competition rating)",
max_rows=5)
biggest_upsets_gdf = gr.Dataframe(label="Biggest upsets (matches won sorted by rating - opponent post-competition rating)",
max_rows=5)
highest_rated_opponent_gdf = gr.Dataframe(label="Best opponent", max_rows=1)
match_longest_game_gdf = gr.Dataframe(label="Match with longest game", max_rows=1)
with gr.Row():
with gr.Column():
opponent_rating_dist_plot = gr.Plot(show_label=False)
with gr.Column():
opponent_rating_dist_over_time_plot = gr.Plot(show_label=False)
inputs = [input_file]
outputs = [
num_comps_box,
num_matches_box,
matches_per_comp_plot,
opponent_names_plot,
comp_names_plot,
most_frequent_opponents_gdf,
best_wins_gdf,
biggest_upsets_gdf,
highest_rated_opponent_gdf,
rating_over_time_plot,
match_longest_game_gdf,
opponent_rating_dist_plot,
opponent_rating_dist_over_time_plot,
]
btn.click(usatt_rating_analyzer, inputs=inputs, outputs=outputs)
if __name__ == "__main__":
demo.launch() |