File size: 14,113 Bytes
0e1f732
 
 
 
 
 
 
 
 
 
 
 
7c475e4
0e1f732
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f24c35
 
0e1f732
 
 
 
 
 
 
 
 
 
 
 
 
 
75c0152
 
0e1f732
 
 
 
 
 
 
 
7f24c35
0e1f732
 
 
 
 
 
75c0152
0e1f732
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75c0152
0e1f732
 
 
 
 
7814537
 
 
 
 
 
 
 
 
 
0e1f732
 
 
 
 
 
 
 
 
 
 
7f24c35
0e1f732
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f24c35
 
 
0e1f732
7f24c35
 
 
 
0e1f732
7f24c35
0e1f732
75c0152
0e1f732
 
7f24c35
 
 
 
 
 
 
 
0e1f732
 
 
 
7f24c35
0e1f732
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75c0152
 
0e1f732
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
906d634
 
 
 
 
 
75c0152
 
 
906d634
23d63d8
906d634
 
bfe3be9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f24c35
bfe3be9
 
6125d10
bfe3be9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e1f732
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c475e4
75c0152
 
 
 
 
 
 
 
 
 
7c475e4
 
 
 
 
 
 
 
 
 
0e1f732
 
 
 
 
 
 
 
5dfcd36
 
0e1f732
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import logging
from pathlib import Path
from typing import Optional, Tuple

import matplotlib.pyplot as plt
import pandas as pd
import plotly.graph_objects as go
import requests
import seaborn as sns
from bs4 import BeautifulSoup
from wordcloud import WordCloud

from util import get_max_abs_int, snake_case_to_human_readable, int_csv_to_list


def _rename_columns(df: pd.DataFrame, is_tournament: bool) -> pd.DataFrame:
    columns = {
        "Rating": "rating",
        "Result": "result",
        "Scores": "scores",
        "Opponent": "opponent",
        "OpponentRating": "opponent_rating",
    }

    if is_tournament:
        columns.update({
            "TournamentStartDate": "tournament_start_date",
            "TournamentEndDate": "tournament_end_date",
            " Touranament": "tournament",
        })
    else:
        columns.update({
            "EventDate": "event_date",
            "LeagueName": "league_name"
        })

    return df.rename(columns=columns)


def _fix_dtypes(df: pd.DataFrame, is_tournament: bool) -> pd.DataFrame:
    if is_tournament:
        df["tournament_start_date"] = pd.to_datetime(df["tournament_start_date"])
        df["tournament_end_date"] = pd.to_datetime(df["tournament_end_date"])
        df["tournament"] = df["tournament"].astype('category')
    else:
        df["event_date"] = pd.to_datetime(df["event_date"])
        df["league_name"] = df["league_name"].astype('string')

    df["rating"] = df["rating"].astype('int')
    df["result"] = df["result"].astype('category')
    df["scores"] = df["scores"].astype('string')
    df["opponent"] = df["opponent"].astype('category')
    df["opponent_rating"] = df["opponent_rating"].astype('int')

    return df


def make_df_columns_readable(df: Optional[pd.DataFrame], is_tournament: bool) -> Optional[pd.DataFrame]:
    """Make a data frame's columns human-readable."""
    if df is None:
        return None

    nat_to_none = lambda x: None if x == "NaT" else x
    if is_tournament:
        if "tournament_start_date" in df.columns and "tournament_end_date" in df.columns:
            df['tournament_start_date'] = pd.to_datetime(df['tournament_start_date'])
            df['tournament_end_date'] = pd.to_datetime(df['tournament_end_date'])
            df['tournament_start_date'] = df['tournament_start_date'].dt.date.astype(str).apply(nat_to_none)
            df['tournament_end_date'] = df['tournament_end_date'].dt.date.astype(str).apply(nat_to_none)

            def create_date(tournament_start_date, tournament_end_date):
                missing_start_date = tournament_start_date is None
                missing_end_date = tournament_end_date is None
                if not missing_start_date and not missing_end_date:
                    if tournament_start_date is not tournament_end_date:
                        return ' - '.join((tournament_start_date, tournament_end_date))
                    else:
                        return tournament_start_date
                else:
                    return tournament_start_date if missing_end_date else tournament_end_date

            df["date"] = df.apply(lambda row: create_date(row['tournament_start_date'], row['tournament_end_date']),
                                  axis=1)
            df = df.drop(columns=["tournament_start_date", "tournament_end_date"])

            # Move date to the front.
            columns = list(df.columns)
            columns.insert(0, columns.pop(columns.index("date")))
            df = df.loc[:, columns]
    else:
        if "event_date" in df.columns:
            df['event_date'] = pd.to_datetime(df['event_date'])
            df['event_date'] = df['event_date'].dt.date.astype(str).apply(nat_to_none)
        df = df.rename(columns={"league_name": "league"})

    df = df.rename(columns=lambda c: snake_case_to_human_readable(c))
    return df


def _check_match_type(match_type: str) -> str:
    allowed_match_types = {"tournament", "league"}
    if match_type not in allowed_match_types:
        raise ValueError(
            f"The only supported match types are {allowed_match_types}. Found match type of '{match_type}'.")
    return match_type


def fetch_player_name(profile_id: int) -> str:
    """Fetch a player name from theUSATT website.

    note: the profile ID is NOT the USATT number.
    """
    url = f"https://usatt.simplycompete.com/userAccount/up/{profile_id}"
    logging.info(f"Fetching player name from {url}")
    page = requests.get(url)
    soup = BeautifulSoup(page.content, "html.parser")
    profile_elt = soup.find("div", class_="profile-header")
    return profile_elt.find(class_="title").text.strip()


def get_player_name(file_stem: str) -> str:
    profile_id = int(file_stem.split(" ")[0].replace("_", "").split("matches")[-1])
    return fetch_player_name(profile_id)


def get_num_competitions_played(df: pd.DataFrame, is_tournament: bool) -> int:
    key_name = "tournament_end_date" if is_tournament else "event_date"
    return df[key_name].nunique()


def get_first_competition_year(df: pd.DataFrame, is_tournament: bool) -> int:
    key_name = "tournament_end_date" if is_tournament else "event_date"
    return df[key_name].min().year


def get_num_active_years(df: pd.DataFrame, is_tournament: bool) -> int:
    key_name = "tournament_end_date" if is_tournament else "event_date"
    return df[key_name].dt.year.nunique()


def get_current_rating(df: pd.DataFrame) -> int:
    return df.rating.iloc[0]


def get_max_rating(df: pd.DataFrame) -> int:
    return df.rating.max()


def get_matches_per_competition_fig(df: pd.DataFrame, is_tournament: bool):
    fig = plt.figure()
    plt.title('Matches per competition')
    sns.histplot(df.groupby('tournament' if is_tournament else "event_date", observed=False).size())
    plt.xlabel('Number of matches in competition')
    return fig


def get_competition_name_word_cloud_fig(df: pd.DataFrame, is_tournament: bool):
    fig = plt.figure()
    key_name = "tournament" if is_tournament else "league_name"
    wordcloud = WordCloud().generate(" ".join(df[key_name].values.tolist()))
    plt.imshow(wordcloud, interpolation='bilinear')
    plt.axis("off")
    return fig


def get_opponent_name_word_cloud_fig(df: pd.DataFrame):
    fig = plt.figure()
    wordcloud = WordCloud().generate(" ".join(df.opponent.values.tolist()))
    plt.imshow(wordcloud, interpolation='bilinear')
    plt.axis("off")
    return fig


def get_rating_over_time_fig(df: pd.DataFrame, is_tournament: bool, span: int = 60):
    df['ema'] = df['rating'].ewm(span=span, adjust=False).mean()

    fig = go.Figure()

    # Raw rating over time trace
    x_key_name = "tournament_end_date" if is_tournament else "event_date"
    fig.add_trace(go.Scatter(x=df[x_key_name],
                             y=df["rating"],
                             name='Rating',
                             mode='lines+markers',
                             line=dict(width=0.9),
                             marker=dict(size=4))),

    # EMA trace
    fig.add_trace(go.Scatter(x=df[x_key_name],
                             y=df["ema"],
                             mode='lines',
                             name='Rating EMA',
                             visible='legendonly',
                             line=dict(width=1.5, dash='dot')))

    fig.update_layout(
        title='Rating over time',
        xaxis_title='Competition date',
        yaxis_title='Rating',
        showlegend=True,
        template="plotly_white",
    )

    return fig


def get_match_with_longest_game(df: pd.DataFrame, is_tournament: bool) -> Optional[pd.DataFrame]:
    if not is_tournament:
        return None
    df_non_null = df.loc[~df.scores.isna()]
    return df_non_null.iloc[[df_non_null.scores.apply(get_max_abs_int).argmax()]]


def get_win_loss_record_str(group_df) -> str:
    if len(group_df) > 0:
        win_loss_counts = group_df.value_counts()
        n_wins = win_loss_counts.Won if hasattr(win_loss_counts, "Won") else 0
        n_losses = win_loss_counts.Lost if hasattr(win_loss_counts, "Lost") else 0
    else:
        n_wins = 0
        n_losses = 0

    return f"{n_wins}, {n_losses}"


def get_most_frequent_opponents(df: pd.DataFrame, top_n: int = 5) -> pd.DataFrame:
    df_with_opponents = df.loc[df.opponent != "-, -"]

    most_common_opponents_df = df_with_opponents.groupby('opponent', observed=False).agg(
        {"result": [get_win_loss_record_str, "size"]})
    most_common_opponents_df.columns = most_common_opponents_df.columns.get_level_values(1)
    most_common_opponents_df.rename({"get_win_loss_record_str": "Win/loss record", "size": "Number of matches"}, axis=1,
                                    inplace=True)
    most_common_opponents_df["Opponent"] = most_common_opponents_df.index
    return most_common_opponents_df.sort_values("Number of matches", ascending=False)[
        ["Opponent", "Number of matches", "Win/loss record"]].head(top_n)


def get_best_wins(df: pd.DataFrame, top_n: int = 5) -> pd.DataFrame:
    """Get the top-n wins sorted by opponent rating."""
    return df.loc[df.result == 'Won'].sort_values("opponent_rating", ascending=False).head(top_n)


def get_biggest_upsets(df: pd.DataFrame, top_n: int = 5) -> pd.DataFrame:
    """Get the top-n wins sorted by rating difference."""
    df['rating_difference'] = df['opponent_rating'] - df['rating']
    return df.loc[df.result == 'Won'].sort_values("rating_difference", ascending=False).head(top_n)


def get_worst_recent_losses(df: pd.DataFrame,
                            is_tournament: bool,
                            top_k_losses: int = 5,
                            top_n_comps: int = 5) -> pd.DataFrame:
    """Get the top-k most recent worst losses from the top-n most recent competitions."""
    x_key_name = "tournament_end_date" if is_tournament else "event_date"
    most_recent_competition_dates = df.groupby(x_key_name).first().reset_index().nlargest(top_n_comps,
                                                                                          columns=x_key_name)[
        x_key_name]
    df_recent = df.loc[df[x_key_name].isin(most_recent_competition_dates)]
    return df_recent.loc[df_recent.result == 'Lost'].sort_values("opponent_rating", ascending=True).head(top_k_losses)


def get_best_competitions(df: pd.DataFrame, is_tournament: bool, top_n: int = 5) -> pd.DataFrame:
    # First add pre-competition ratings
    x_key_name = "tournament_end_date" if is_tournament else "event_date"
    grouped = df.groupby(x_key_name)

    # We incorrectly fill the first pre-competition rating to the first rating so that
    # the top-k rating differences make sense.
    fill_value = df.iloc[-1].rating
    pre_comp_ratings_by_group = grouped['rating'].first().shift(periods=1, fill_value=fill_value)

    def assign_pre_comp_rating(group_df):
        """Assign a pre-competition rating to a given group."""
        comp_end_date = group_df[x_key_name].unique()[0]
        group_df['pre-competition_rating'] = pre_comp_ratings_by_group.loc[comp_end_date]
        return group_df

    df = grouped.apply(lambda x: assign_pre_comp_rating(x))

    df['rating_increase'] = df['rating'] - df['pre-competition_rating']
    df.reset_index(drop=True, inplace=True)
    best_competition_dates = df.groupby(x_key_name)["rating_increase"].first().nlargest(top_n).index

    tournament_df = df.loc[df[x_key_name].isin(best_competition_dates)].groupby(
        [x_key_name]).first().sort_values(by='rating_increase', ascending=False).reset_index()

    cols = []
    if is_tournament:
        cols += ['tournament_start_date', 'tournament_end_date', 'tournament']
    else:
        cols += ["event_date", "league_name"]
    cols += ['rating_increase', 'pre-competition_rating', 'rating']

    tournament_df = tournament_df[cols]
    tournament_df = tournament_df.rename(columns={"rating": "post-competition_rating"})

    return tournament_df


def get_highest_rated_opponent(df: pd.DataFrame) -> pd.DataFrame:
    return df.iloc[df.opponent_rating.idxmax()].to_frame().transpose()


def get_opponent_rating_distr_fig(df: pd.DataFrame):
    fig = plt.figure()
    plt.title('Opponent rating distribution')
    sns.histplot(data=df, x="opponent_rating", hue='result')
    plt.xlabel('Opponent rating')
    return fig


def get_opponent_rating_dist_over_time_fig(df: pd.DataFrame, is_tournament: bool):
    fig, ax = plt.subplots(figsize=(12, 8))
    plt.title(f'Opponent rating distribution over time')
    x_key_name = "tournament_end_date" if is_tournament else "event_date"
    sns.violinplot(data=df,
                   x=df[x_key_name].dt.year,
                   y="opponent_rating",
                   hue="result",
                   split=True,
                   inner='points',
                   cut=1,
                   ax=ax)
    plt.xticks(rotation=30)
    plt.xlabel('Competition year')
    plt.ylabel('Opponent rating')
    return fig


def get_total_match_points(score_str: str) -> int:
    single_game_scores = int_csv_to_list(score_str)
    total_points = 0
    for single_game_score in single_game_scores:
        abs_gscore = abs(single_game_score)
        if abs_gscore < 10:
            total_points += abs_gscore + 11
        else:
            total_points += 2 * abs_gscore + 2
    return total_points


def get_longest_match(df: pd.DataFrame, is_tournament: bool) -> Optional[pd.DataFrame]:
    """Get the longest match, where longest is defined as the most number of points played."""
    if not is_tournament:
        return None
    df_non_null = df.loc[~df.scores.isna()]
    df_non_null["total_points"] = df_non_null.scores.apply(get_total_match_points)
    return df_non_null.iloc[[df_non_null["total_points"].argmax()]]


def load_match_df(file_path: Path) -> Tuple[pd.DataFrame, bool]:
    match_type = _check_match_type(file_path.name.split('_')[0])
    is_tournament = match_type == "tournament"

    df = pd.read_csv(file_path)
    df = _rename_columns(df, is_tournament)
    df = _fix_dtypes(df, is_tournament)

    logging.info(f"Loaded match CSV {file_path}.")

    return df, is_tournament