Commit
·
37352c9
1
Parent(s):
1eb15c8
feat: prettify date column
Browse files
app.py
CHANGED
@@ -54,7 +54,33 @@ def make_df_columns_readable(df: Optional[pd.DataFrame], is_tournament: bool) ->
|
|
54 |
if df is None:
|
55 |
return None
|
56 |
|
57 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
df = df.rename(columns={"league_name": "league"})
|
59 |
|
60 |
df = df.rename(columns=lambda c: " ".join(c.capitalize().split("_")))
|
|
|
54 |
if df is None:
|
55 |
return None
|
56 |
|
57 |
+
nat_to_none = lambda x: None if x == "NaT" else x
|
58 |
+
if is_tournament:
|
59 |
+
if "tournament_start_date" in df.columns and "tournament_end_date" in df.columns:
|
60 |
+
df['tournament_start_date'] = df['tournament_start_date'].dt.date.astype(str).apply(nat_to_none)
|
61 |
+
df['tournament_end_date'] = df['tournament_end_date'].dt.date.astype(str).apply(nat_to_none)
|
62 |
+
|
63 |
+
def create_date(tournament_start_date, tournament_end_date):
|
64 |
+
missing_start_date = tournament_start_date is None
|
65 |
+
missing_end_date = tournament_end_date is None
|
66 |
+
if not missing_start_date and not missing_end_date:
|
67 |
+
if tournament_start_date is not tournament_end_date:
|
68 |
+
return ' - '.join((tournament_start_date, tournament_end_date))
|
69 |
+
else:
|
70 |
+
return tournament_start_date
|
71 |
+
else:
|
72 |
+
return tournament_start_date if missing_end_date else tournament_end_date
|
73 |
+
|
74 |
+
df["date"] = df.apply(lambda row: create_date(row['tournament_start_date'], row['tournament_end_date']), axis=1)
|
75 |
+
df = df.drop(columns=["tournament_start_date", "tournament_end_date"])
|
76 |
+
|
77 |
+
# Move date to the front.
|
78 |
+
columns = list(df.columns)
|
79 |
+
columns.insert(0, columns.pop(columns.index("date")))
|
80 |
+
df = df.loc[:, columns]
|
81 |
+
else:
|
82 |
+
if "event_date" in df.columns:
|
83 |
+
df['event_date'] = df['event_date'].dt.date.astype(str).apply(nat_to_none)
|
84 |
df = df.rename(columns={"league_name": "league"})
|
85 |
|
86 |
df = df.rename(columns=lambda c: " ".join(c.capitalize().split("_")))
|