File size: 6,359 Bytes
99bbd30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import os
import sys

sys.path.append(os.getcwd())

import json
from concurrent.futures import ProcessPoolExecutor
from importlib.resources import files
from pathlib import Path
from tqdm import tqdm
import soundfile as sf
from datasets.arrow_writer import ArrowWriter

import numpy as np
import torch
import torchaudio


def deal_with_audio_dir(audio_dir):
    sub_result, durations = [], []
    vocab_set = set()
    audio_lists = list(audio_dir.rglob("*.wav"))

    for line in audio_lists:
        text_path = line.with_suffix(".normalized.txt")
        text = open(text_path, "r").read().strip()
        duration = sf.info(line).duration
        if duration < 0.4 or duration > 30:
            continue
        sub_result.append({"audio_path": str(line), "text": text, "duration": duration})
        durations.append(duration)
        vocab_set.update(list(text))
    return sub_result, durations, vocab_set


def main():
    result = []
    duration_list = []
    text_vocab_set = set()

    # process raw data
    #executor = ProcessPoolExecutor(max_workers=max_workers)
    #futures = []
    #
    #for subset in tqdm(SUB_SET):
    #    dataset_path = Path(os.path.join(dataset_dir, subset))
    #    [
    #        futures.append(executor.submit(deal_with_audio_dir, audio_dir))
    #        for audio_dir in dataset_path.iterdir()
    #        if audio_dir.is_dir()
    #    ]
    #for future in tqdm(futures, total=len(futures)):
    #    sub_result, durations, vocab_set = future.result()
    #    result.extend(sub_result)
    #    duration_list.extend(durations)
    #    text_vocab_set.update(vocab_set)
    #executor.shutdown()

    train_scp = "/ailab-train/speech/zhanghaomin/datas/v2cdata/test.scp"
    
    v2a_path = "/ailab-train/speech/zhanghaomin/codes3/MMAudio-main/output_v2c_s44/"
    #v2a_path = "/ailab-train/speech/zhanghaomin/codes3/v2a_v2cdata/"

    with open(train_scp, "r") as fr:
        for line in fr.readlines():
            video, txt, audio = line.strip().split("\t")
            ####v2a_audio = v2a_path + video.replace("/", "__") + ".flac"
            v2a_audio = v2a_path + video.replace("/", "__")[:-4] + ".wav"

            if not os.path.exists(video) or not os.path.exists(audio) or not os.path.exists(v2a_audio):
                print(video, audio, v2a_audio)
                continue
            waveform, sr = torchaudio.load(audio)
            duration = waveform.shape[-1] / sr
            waveform_v2a, sr_v2a = torchaudio.load(v2a_audio)
            duration_v2a = waveform_v2a.shape[-1] / sr_v2a

            if duration_v2a >= duration:
                waveform_v2a = waveform_v2a[:, :int(sr_v2a*duration)]
            else:
                waveform_v2a = torch.cat([waveform_v2a, torch.zeros([waveform_v2a.shape[0], int(sr_v2a*duration)-waveform_v2a.shape[1]])], dim=1)
            duration_v2a = duration
            
            energy_v2a = []
            for i in range(int(duration_v2a/(256/24000))):
                energy_v2a.append(waveform_v2a[0,int(i*sr_v2a*(256/24000)):int((i+1)*sr_v2a*(256/24000))].abs().mean())
            energy_v2a = np.array(energy_v2a)
            energy_v2a = energy_v2a / max(energy_v2a)
            #print(len(energy_v2a), max(energy_v2a), min(energy_v2a), energy_v2a.mean())
            np.savez(v2a_audio+".npz", energy_v2a)
            
            energy = []
            for i in range(int(duration/(256/24000))):
                energy.append(waveform[0,int(i*sr*(256/24000)):int((i+1)*sr*(256/24000))].abs().mean())
            energy = np.array(energy)
            energy = energy / max(energy)
            #print(len(energy), max(energy), min(energy), energy.mean())
            np.savez(audio+".npz", energy)
            
            d = {}
            d["audio_path"] = audio
            d["text"] = txt
            d["duration"] = duration
            d["energy"] = v2a_audio+".npz"
            result.append(d)
            duration_list.append(duration)
            text_vocab_set.update(list(txt))


    print(len(result), result[:2])  # 354218 [{'audio_path': '/ailab-train/speech/zhanghaomin/datas/libritts/LibriTTS/train-clean-100/7635/105409/7635_105409_000088_000000.wav', 'text': '"There is no \'but.\' I said, do you remember?"', 'duration': 2.31}, {'audio_path': '/ailab-train/speech/zhanghaomin/datas/libritts/LibriTTS/train-clean-100/7635/105409/7635_105409_000061_000002.wav', 'text': 'They know it.', 'duration': 0.76}]
    print(len(duration_list), duration_list[:2])  # 354218 [2.31, 0.76]
    print(len(text_vocab_set))  # 78

    # save preprocessed dataset to disk
    if not os.path.exists(f"{save_dir}"):
        os.makedirs(f"{save_dir}")
    print(f"\nSaving to {save_dir} ...")

    with ArrowWriter(path=f"{save_dir}/raw.arrow") as writer:
        for line in tqdm(result, desc="Writing to raw.arrow ..."):
            writer.write(line)

    # dup a json separately saving duration in case for DynamicBatchSampler ease
    with open(f"{save_dir}/duration.json", "w", encoding="utf-8") as f:
        json.dump({"duration": duration_list}, f, ensure_ascii=False)

    # vocab map, i.e. tokenizer
    with open(f"{save_dir}/vocab.txt", "w") as f:
        for vocab in sorted(text_vocab_set):
            f.write(vocab + "\n")

    print(f"\nFor {dataset_name}, sample count: {len(result)}")
    print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}")
    print(f"For {dataset_name}, total {sum(duration_list)/3600:.2f} hours")


if __name__ == "__main__":
    max_workers = 36

    tokenizer = "char"  # "pinyin" | "char"

    #SUB_SET = ["train-clean-100", "train-clean-360", "train-other-500"]
    #dataset_dir = "/ailab-train/speech/zhanghaomin/datas/libritts/LibriTTS"
    #dataset_name = f"LibriTTS_{'_'.join(SUB_SET)}_{tokenizer}".replace("train-clean-", "").replace("train-other-", "")
    dataset_name = "v2c_s44_test_char"
    save_dir = str(files("f5_tts").joinpath("../../")) + f"/data/{dataset_name}"
    print(f"\nPrepare for {dataset_name}, will save to {save_dir}\n")
    main()

    # For LibriTTS_100_360_500_char, sample count: 354218
    # For LibriTTS_100_360_500_char, vocab size is: 78
    # For LibriTTS_100_360_500_char, total 554.09 hours