File size: 8,037 Bytes
99bbd30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import logging
import os
from pathlib import Path
from typing import Optional, Union

import pandas as pd
import torch
import torchaudio
from torch.utils.data.dataset import Dataset
from torchvision.transforms import v2
from torio.io import StreamingMediaDecoder

from mmaudio.utils.dist_utils import local_rank

log = logging.getLogger()

_CLIP_SIZE = 384
_CLIP_FPS = 8.0

_SYNC_SIZE = 224
_SYNC_FPS = 25.0


class VGGSound(Dataset):

    def __init__(

        self,

        root: Union[str, Path],

        *,

        tsv_path: Union[str, Path] = 'sets/vgg3-train.tsv',

        sample_rate: int = 16_000,

        duration_sec: float = 8.0,

        audio_samples: Optional[int] = None,

        normalize_audio: bool = False,

    ):
        self.root = Path(root)
        self.normalize_audio = normalize_audio
        if audio_samples is None:
            self.audio_samples = int(sample_rate * duration_sec)
        else:
            self.audio_samples = audio_samples
            effective_duration = audio_samples / sample_rate
            # make sure the duration is close enough, within 15ms
            assert abs(effective_duration - duration_sec) < 0.015, \
                f'audio_samples {audio_samples} does not match duration_sec {duration_sec}'

        ####videos = sorted(os.listdir(self.root))
        ####videos = set([Path(v).stem for v in videos])  # remove extensions
        ####self.labels = {}
        ####self.videos = []
        ####missing_videos = []
        ####
        ##### read the tsv for subset information
        ####df_list = pd.read_csv(tsv_path, sep='\t', dtype={'id': str}).to_dict('records')
        ####for record in df_list:
        ####    id = record['id']
        ####    label = record['label']
        ####    if id in videos:
        ####        self.labels[id] = label
        ####        self.videos.append(id)
        ####    else:
        ####        missing_videos.append(id)
        
        self.labels = []
        self.videos = []
        with open(tsv_path, "r") as fr:
            for line in fr.readlines():
                video_path, label = line.strip().split("\t")
                self.labels.append("the sound of " + label)
                self.videos.append(video_path)

        if local_rank == 0:
            ####log.info(f'{len(videos)} videos found in {root}')
            log.info(f'{len(self.videos)} videos found in {tsv_path}')
            ####log.info(f'{len(missing_videos)} videos missing in {root}')

        self.sample_rate = sample_rate
        self.duration_sec = duration_sec

        self.expected_audio_length = audio_samples
        self.clip_expected_length = int(_CLIP_FPS * self.duration_sec)
        self.sync_expected_length = int(_SYNC_FPS * self.duration_sec)

        self.clip_transform = v2.Compose([
            v2.Resize((_CLIP_SIZE, _CLIP_SIZE), interpolation=v2.InterpolationMode.BICUBIC),
            v2.ToImage(),
            v2.ToDtype(torch.float32, scale=True),
        ])

        self.sync_transform = v2.Compose([
            v2.Resize(_SYNC_SIZE, interpolation=v2.InterpolationMode.BICUBIC),
            v2.CenterCrop(_SYNC_SIZE),
            v2.ToImage(),
            v2.ToDtype(torch.float32, scale=True),
            v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
        ])

        self.resampler = {}

    def sample(self, idx: int) -> dict[str, torch.Tensor]:
        ####video_id = self.videos[idx]
        ####label = self.labels[video_id]
        video_path = Path(self.videos[idx]).expanduser()
        label = self.labels[idx]
        video_id = video_path.stem

        ####reader = StreamingMediaDecoder(self.root / (video_id + '.mp4'))
        reader = StreamingMediaDecoder(video_path)
        reader.add_basic_video_stream(
            frames_per_chunk=int(_CLIP_FPS * self.duration_sec),
            frame_rate=_CLIP_FPS,
            format='rgb24',
        )
        reader.add_basic_video_stream(
            frames_per_chunk=int(_SYNC_FPS * self.duration_sec),
            frame_rate=_SYNC_FPS,
            format='rgb24',
        )
        reader.add_basic_audio_stream(frames_per_chunk=2**30, )

        reader.fill_buffer()
        data_chunk = reader.pop_chunks()

        clip_chunk = data_chunk[0]
        sync_chunk = data_chunk[1]
        audio_chunk = data_chunk[2]

        if clip_chunk is None:
            raise RuntimeError(f'CLIP video returned None {video_id}')
        ####repeat = self.clip_expected_length // clip_chunk.shape[0] + 2
        ####clip_chunk = clip_chunk.repeat(repeat,1,1,1)
        if clip_chunk.shape[0] < self.clip_expected_length:
            raise RuntimeError(
                f'CLIP video too short {video_id}, expected {self.clip_expected_length}, got {clip_chunk.shape[0]}'
            )

        if sync_chunk is None:
            raise RuntimeError(f'Sync video returned None {video_id}')
        ####sync_chunk = sync_chunk.repeat(repeat,1,1,1)
        if sync_chunk.shape[0] < self.sync_expected_length:
            raise RuntimeError(
                f'Sync video too short {video_id}, expected {self.sync_expected_length}, got {sync_chunk.shape[0]}'
            )

        # process audio
        sample_rate = int(reader.get_out_stream_info(2).sample_rate)
        audio_chunk = audio_chunk.transpose(0, 1)
        audio_chunk = audio_chunk.mean(dim=0)  # mono
        if self.normalize_audio:
            abs_max = audio_chunk.abs().max()
            audio_chunk = audio_chunk / abs_max * 0.95
            if abs_max <= 1e-6:
                raise RuntimeError(f'Audio is silent {video_id}')

        # resample
        if sample_rate == self.sample_rate:
            audio_chunk = audio_chunk
        else:
            if sample_rate not in self.resampler:
                # https://pytorch.org/audio/stable/tutorials/audio_resampling_tutorial.html#kaiser-best
                self.resampler[sample_rate] = torchaudio.transforms.Resample(
                    sample_rate,
                    self.sample_rate,
                    lowpass_filter_width=64,
                    rolloff=0.9475937167399596,
                    resampling_method='sinc_interp_kaiser',
                    beta=14.769656459379492,
                )
            audio_chunk = self.resampler[sample_rate](audio_chunk)

        ####audio_chunk = audio_chunk.repeat(repeat)
        if audio_chunk.shape[0] < self.expected_audio_length:
            raise RuntimeError(f'Audio too short {video_id}')
        audio_chunk = audio_chunk[:self.expected_audio_length]

        # truncate the video
        clip_chunk = clip_chunk[:self.clip_expected_length]
        if clip_chunk.shape[0] != self.clip_expected_length:
            raise RuntimeError(f'CLIP video wrong length {video_id}, '
                               f'expected {self.clip_expected_length}, '
                               f'got {clip_chunk.shape[0]}')
        clip_chunk = self.clip_transform(clip_chunk)

        sync_chunk = sync_chunk[:self.sync_expected_length]
        if sync_chunk.shape[0] != self.sync_expected_length:
            raise RuntimeError(f'Sync video wrong length {video_id}, '
                               f'expected {self.sync_expected_length}, '
                               f'got {sync_chunk.shape[0]}')
        sync_chunk = self.sync_transform(sync_chunk)

        data = {
            'id': video_id,
            'caption': label,
            'audio': audio_chunk,
            'clip_video': clip_chunk,
            'sync_video': sync_chunk,
        }

        return data

    def __getitem__(self, idx: int) -> dict[str, torch.Tensor]:
        try:
            return self.sample(idx)
        except Exception as e:
            log.error(f'Error loading video {self.videos[idx]}: {e}')
            return None

    def __len__(self):
        return len(self.labels)