Spaces:
Running
Running
import logging | |
from argparse import ArgumentParser | |
from pathlib import Path | |
import torch | |
import torchaudio | |
from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate, load_video, make_video, | |
setup_eval_logging) | |
from mmaudio.model.flow_matching import FlowMatching | |
from mmaudio.model.networks import MMAudio, get_my_mmaudio | |
from mmaudio.model.utils.features_utils import FeaturesUtils | |
from datetime import datetime | |
import traceback | |
import numpy as np | |
import os | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
log = logging.getLogger() | |
####CUDA_VISIBLE_DEVICES=0 python demo.py --output ./output | |
####CUDA_VISIBLE_DEVICES=4 nohup python demo.py --output ./output_v2c_neg --start 0 --end 1500 & | |
def v2a_load(): | |
setup_eval_logging() | |
parser = ArgumentParser() | |
parser.add_argument('--variant', | |
type=str, | |
#default='large_44k', | |
#default='small_16k', | |
#default='medium_44k', | |
default='small_44k', | |
help='small_16k, small_44k, medium_44k, large_44k, large_44k_v2') | |
parser.add_argument('--video', type=Path, help='Path to the video file') | |
parser.add_argument('--prompt', type=str, help='Input prompt', default='') | |
parser.add_argument('--negative_prompt', type=str, help='Negative prompt', default='') | |
parser.add_argument('--duration', type=float, default=8.0) | |
parser.add_argument('--cfg_strength', type=float, default=4.5) | |
parser.add_argument('--num_steps', type=int, default=25) | |
parser.add_argument('--start', type=int, default=0) | |
parser.add_argument('--end', type=int, default=99999999) | |
parser.add_argument('--scp', type=str, help='video list', default='/ailab-train/speech/zhanghaomin/datas/v2cdata/tmp.scp') | |
parser.add_argument('--calc_energy', type=int, default=0) | |
parser.add_argument('--mask_away_clip', action='store_true') | |
parser.add_argument('--output', type=Path, help='Output directory', default='./output') | |
parser.add_argument('--seed', type=int, help='Random seed', default=42) | |
parser.add_argument('--skip_video_composite', action='store_true') | |
parser.add_argument('--full_precision', action='store_true') | |
args = parser.parse_args() | |
if args.variant not in all_model_cfg: | |
raise ValueError(f'Unknown model variant: {args.variant}') | |
model: ModelConfig = all_model_cfg[args.variant] | |
#model.download_if_needed() | |
seq_cfg = model.seq_cfg | |
#if args.video: | |
# #video_path: Path = Path(args.video).expanduser() | |
# video_path = args.video | |
#else: | |
# video_path = None | |
#prompt: str = args.prompt | |
#negative_prompt: str = args.negative_prompt | |
#output_dir: str = args.output.expanduser() | |
seed: int = args.seed | |
#num_steps: int = args.num_steps | |
duration: float = args.duration | |
cfg_strength: float = args.cfg_strength | |
skip_video_composite: bool = args.skip_video_composite | |
#mask_away_clip: bool = args.mask_away_clip | |
device = 'cpu' | |
if torch.cuda.is_available(): | |
device = 'cuda' | |
elif torch.backends.mps.is_available(): | |
device = 'mps' | |
else: | |
log.warning('CUDA/MPS are not available, running on CPU') | |
print("full_precision", args.full_precision) | |
dtype = torch.float32 if args.full_precision else torch.bfloat16 | |
#output_dir.mkdir(parents=True, exist_ok=True) | |
# load a pretrained model | |
net: MMAudio = get_my_mmaudio(model.model_name).to(device, dtype).eval() | |
####model.model_path = "/ailab-train/speech/zhanghaomin/codes3/MMAudio-main/output/exp_1/exp_1_shadow.pth" | |
model.model_path = "MMAudio" / model.model_path | |
print("model.model_path", model.model_path) | |
net.load_weights(torch.load(model.model_path, map_location=device, weights_only=True)) | |
log.info(f'Loaded weights from {model.model_path}') | |
# misc setup | |
rng = torch.Generator(device=device) | |
rng.manual_seed(seed) | |
#fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps) | |
model.vae_path = "MMAudio" / model.vae_path | |
model.synchformer_ckpt = "MMAudio" / model.synchformer_ckpt | |
print("model.vae_path", model.vae_path) | |
print("model.synchformer_ckpt", model.synchformer_ckpt) | |
print("model.bigvgan_16k_path", model.bigvgan_16k_path) | |
feature_utils = FeaturesUtils(tod_vae_ckpt=model.vae_path, | |
synchformer_ckpt=model.synchformer_ckpt, | |
enable_conditions=True, | |
mode=model.mode, | |
bigvgan_vocoder_ckpt=model.bigvgan_16k_path, | |
need_vae_encoder=False) | |
feature_utils = feature_utils.to(device, dtype).eval() | |
return net, seq_cfg, rng, feature_utils, args | |
def v2a_infer(output_dir, video_path, prompt, num_steps, loaded): | |
net, seq_cfg, rng, feature_utils, args = loaded | |
negative_prompt = "" | |
duration = args.duration | |
cfg_strength = args.cfg_strength | |
skip_video_composite = args.skip_video_composite | |
mask_away_clip = args.mask_away_clip | |
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps) | |
####test_scp = "/ailab-train/speech/zhanghaomin/animation_dataset_v2a/test.scp" | |
#test_scp = "/ailab-train/speech/zhanghaomin/datas/v2cdata/tmp.scp" | |
#test_scp = "/ailab-train/speech/zhanghaomin/datas/v2cdata/test.scp" | |
test_scp = args.scp | |
if video_path is None: | |
lines = [] | |
with open(test_scp, "r") as fr: | |
lines += fr.readlines() | |
#with open(test_scp2, "r") as fr: | |
# lines += fr.readlines() | |
tests = [] | |
for line in lines[args.start: args.end]: | |
####video_path, prompt = line.strip().split("\t") | |
####prompt = "the sound of " + prompt | |
####negative_prompt = "" | |
video_path, _, audio_path = line.strip().split("\t") | |
####video_path = "/ailab-train/speech/zhanghaomin/datas/v2cdata/DragonII/DragonII_videos/Gobber/0725.mp4" | |
prompt = "" | |
#negative_prompt = "speech, voice, talking, speaking" | |
negative_prompt = "" | |
tests.append([video_path, prompt, negative_prompt, audio_path]) | |
else: | |
tests = [[video_path, prompt, negative_prompt, ""]] | |
print(datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S.%f")[:-3], "start") | |
for video_path, prompt, negative_prompt, audio_path in tests: | |
if video_path is not None: | |
video_path = Path(video_path).expanduser() | |
log.info(f'Using video {video_path}') | |
try: | |
video_info = load_video(video_path, args.duration) | |
except: | |
print("Error load_video", video_path) | |
traceback.print_exc() | |
continue | |
clip_frames = video_info.clip_frames | |
sync_frames = video_info.sync_frames | |
duration = video_info.duration_sec | |
if mask_away_clip: | |
clip_frames = None | |
else: | |
clip_frames = clip_frames.unsqueeze(0) | |
sync_frames = sync_frames.unsqueeze(0) | |
else: | |
log.info('No video provided -- text-to-audio mode') | |
clip_frames = sync_frames = None | |
seq_cfg.duration = duration | |
net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len) | |
log.info(f'Prompt: {prompt}') | |
log.info(f'Negative prompt: {negative_prompt}') | |
audios = generate(clip_frames, | |
sync_frames, [prompt], | |
negative_text=[negative_prompt], | |
feature_utils=feature_utils, | |
net=net, | |
fm=fm, | |
rng=rng, | |
cfg_strength=cfg_strength) | |
audio = audios.float().cpu()[0] | |
if video_path is not None: | |
####save_path = output_dir / f'{video_path.stem}.flac' | |
save_path = str(output_dir) + "/" + str(video_path).replace("/", "__").strip(".") + ".flac" | |
else: | |
safe_filename = prompt.replace(' ', '_').replace('/', '_').replace('.', '') | |
save_path = output_dir / f'{safe_filename}.flac' | |
torchaudio.save(save_path, audio, seq_cfg.sampling_rate) | |
#### calculate energy | |
if args.calc_energy: | |
waveform_v2a, sr_v2a = torchaudio.load(save_path) | |
duration_v2a = waveform_v2a.shape[-1] / sr_v2a | |
if os.path.exists(audio_path): | |
waveform, sr = torchaudio.load(audio_path) | |
duration = waveform.shape[-1] / sr | |
if duration_v2a >= duration: | |
waveform_v2a = waveform_v2a[:, :int(sr_v2a*duration)] | |
else: | |
waveform_v2a = torch.cat([waveform_v2a, torch.zeros([waveform_v2a.shape[0], int(sr_v2a*duration)-waveform_v2a.shape[1]])], dim=1) | |
duration_v2a = duration | |
energy_v2a = [] | |
for i in range(int(duration_v2a/(256/24000))): | |
energy_v2a.append(waveform_v2a[0,int(i*sr_v2a*(256/24000)):int((i+1)*sr_v2a*(256/24000))].abs().mean()) | |
energy_v2a = np.array(energy_v2a) | |
energy_v2a = energy_v2a / max(energy_v2a) | |
#print(len(energy_v2a), max(energy_v2a), min(energy_v2a), energy_v2a.mean()) | |
np.savez(save_path+".npz", energy_v2a) | |
log.info(f'Audio saved to {save_path}') | |
if video_path is not None and not skip_video_composite: | |
####video_save_path = output_dir / f'{video_path.stem}.mp4' | |
video_save_path = str(output_dir) + "/" + str(video_path).replace("/", "__").strip(".") + ".mp4" | |
make_video(video_info, video_save_path, audio, sampling_rate=seq_cfg.sampling_rate) | |
log.info(f'Video saved to {video_save_path}') | |
log.info('Memory usage: %.2f GB', torch.cuda.max_memory_allocated() / (2**30)) | |
print(datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S.%f")[:-3], "end") | |
if __name__ == '__main__': | |
main() | |