lshzhm's picture
init commit
99bbd30 verified
raw
history blame contribute delete
7.51 kB
import logging
import random
import numpy as np
import torch
from omegaconf import DictConfig
from torch.utils.data import DataLoader, Dataset
from torch.utils.data.dataloader import default_collate
from torch.utils.data.distributed import DistributedSampler
from mmaudio.data.eval.audiocaps import AudioCapsData
from mmaudio.data.eval.video_dataset import MovieGen, VGGSound
from mmaudio.data.extracted_audio import ExtractedAudio
from mmaudio.data.extracted_vgg import ExtractedVGG
from mmaudio.data.mm_dataset import MultiModalDataset
from mmaudio.utils.dist_utils import local_rank
log = logging.getLogger()
# Re-seed randomness every time we start a worker
def worker_init_fn(worker_id: int):
worker_seed = torch.initial_seed() % (2**31) + worker_id + local_rank * 1000
np.random.seed(worker_seed)
random.seed(worker_seed)
log.debug(f'Worker {worker_id} re-seeded with seed {worker_seed} in rank {local_rank}')
def load_vgg_data(cfg: DictConfig, data_cfg: DictConfig) -> Dataset:
dataset = ExtractedVGG(tsv_path=data_cfg.tsv,
data_dim=cfg.data_dim,
premade_mmap_dir=data_cfg.memmap_dir)
return dataset
def load_audio_data(cfg: DictConfig, data_cfg: DictConfig) -> Dataset:
dataset = ExtractedAudio(tsv_path=data_cfg.tsv,
data_dim=cfg.data_dim,
premade_mmap_dir=data_cfg.memmap_dir)
return dataset
def setup_training_datasets(cfg: DictConfig) -> tuple[Dataset, DistributedSampler, DataLoader]:
if cfg.mini_train:
vgg = load_vgg_data(cfg, cfg.data.ExtractedVGG_val)
audiocaps = load_audio_data(cfg, cfg.data.AudioCaps)
dataset = MultiModalDataset([vgg], [audiocaps])
if cfg.example_train:
video = load_vgg_data(cfg, cfg.data.Example_video)
####audio = load_audio_data(cfg, cfg.data.Example_audio)
####dataset = MultiModalDataset([video], [audio])
dataset = MultiModalDataset([video], [])
else:
# load the largest one first
freesound = load_audio_data(cfg, cfg.data.FreeSound)
vgg = load_vgg_data(cfg, cfg.data.ExtractedVGG)
audiocaps = load_audio_data(cfg, cfg.data.AudioCaps)
audioset_sl = load_audio_data(cfg, cfg.data.AudioSetSL)
bbcsound = load_audio_data(cfg, cfg.data.BBCSound)
clotho = load_audio_data(cfg, cfg.data.Clotho)
dataset = MultiModalDataset([vgg] * cfg.vgg_oversample_rate,
[audiocaps, audioset_sl, bbcsound, freesound, clotho])
batch_size = cfg.batch_size
num_workers = cfg.num_workers
pin_memory = cfg.pin_memory
sampler, loader = construct_loader(dataset,
batch_size,
num_workers,
shuffle=True,
drop_last=True,
pin_memory=pin_memory)
return dataset, sampler, loader
def setup_test_datasets(cfg):
dataset = load_vgg_data(cfg, cfg.data.ExtractedVGG_test)
batch_size = cfg.batch_size
num_workers = cfg.num_workers
pin_memory = cfg.pin_memory
sampler, loader = construct_loader(dataset,
batch_size,
num_workers,
shuffle=False,
drop_last=False,
pin_memory=pin_memory)
return dataset, sampler, loader
def setup_val_datasets(cfg: DictConfig) -> tuple[Dataset, DataLoader, DataLoader]:
if cfg.example_train:
####dataset = load_vgg_data(cfg, cfg.data.Example_video)
dataset = load_vgg_data(cfg, cfg.data.Example_video_val)
else:
dataset = load_vgg_data(cfg, cfg.data.ExtractedVGG_val)
val_batch_size = cfg.batch_size
val_eval_batch_size = cfg.eval_batch_size
num_workers = cfg.num_workers
pin_memory = cfg.pin_memory
_, val_loader = construct_loader(dataset,
val_batch_size,
num_workers,
shuffle=False,
drop_last=False,
pin_memory=pin_memory)
_, eval_loader = construct_loader(dataset,
val_eval_batch_size,
num_workers,
shuffle=False,
drop_last=False,
pin_memory=pin_memory)
return dataset, val_loader, eval_loader
def setup_eval_dataset(dataset_name: str, cfg: DictConfig) -> tuple[Dataset, DataLoader]:
if dataset_name.startswith('audiocaps_full'):
dataset = AudioCapsData(cfg.eval_data.AudioCaps_full.audio_path,
cfg.eval_data.AudioCaps_full.csv_path)
elif dataset_name.startswith('audiocaps'):
dataset = AudioCapsData(cfg.eval_data.AudioCaps.audio_path,
cfg.eval_data.AudioCaps.csv_path)
elif dataset_name.startswith('moviegen'):
dataset = MovieGen(cfg.eval_data.MovieGen.video_path,
cfg.eval_data.MovieGen.jsonl_path,
duration_sec=cfg.duration_s)
elif dataset_name.startswith('vggsound'):
dataset = VGGSound(cfg.eval_data.VGGSound.video_path,
cfg.eval_data.VGGSound.csv_path,
duration_sec=cfg.duration_s)
else:
raise ValueError(f'Invalid dataset name: {dataset_name}')
batch_size = cfg.batch_size
num_workers = cfg.num_workers
pin_memory = cfg.pin_memory
_, loader = construct_loader(dataset,
batch_size,
num_workers,
shuffle=False,
drop_last=False,
pin_memory=pin_memory,
error_avoidance=True)
return dataset, loader
def error_avoidance_collate(batch):
batch = list(filter(lambda x: x is not None, batch))
return default_collate(batch)
def construct_loader(dataset: Dataset,
batch_size: int,
num_workers: int,
*,
shuffle: bool = True,
drop_last: bool = True,
pin_memory: bool = False,
error_avoidance: bool = False) -> tuple[DistributedSampler, DataLoader]:
train_sampler = DistributedSampler(dataset, rank=local_rank, shuffle=shuffle)
train_loader = DataLoader(dataset,
batch_size,
sampler=train_sampler,
num_workers=num_workers,
worker_init_fn=worker_init_fn,
drop_last=drop_last,
persistent_workers=num_workers > 0,
pin_memory=pin_memory,
collate_fn=error_avoidance_collate if error_avoidance else None)
return train_sampler, train_loader