lshzhm's picture
init commit
99bbd30 verified
raw
history blame contribute delete
4.42 kB
import json
import logging
import os
from pathlib import Path
from typing import Union
import torch
from torch.utils.data.dataset import Dataset
from torchvision.transforms import v2
from torio.io import StreamingMediaDecoder
from mmaudio.utils.dist_utils import local_rank
log = logging.getLogger()
_CLIP_SIZE = 384
_CLIP_FPS = 8.0
_SYNC_SIZE = 224
_SYNC_FPS = 25.0
class MovieGenData(Dataset):
def __init__(
self,
video_root: Union[str, Path],
sync_root: Union[str, Path],
jsonl_root: Union[str, Path],
*,
duration_sec: float = 10.0,
read_clip: bool = True,
):
self.video_root = Path(video_root)
self.sync_root = Path(sync_root)
self.jsonl_root = Path(jsonl_root)
self.read_clip = read_clip
videos = sorted(os.listdir(self.video_root))
videos = [v[:-4] for v in videos] # remove extensions
self.captions = {}
for v in videos:
with open(self.jsonl_root / (v + '.jsonl')) as f:
data = json.load(f)
self.captions[v] = data['audio_prompt']
if local_rank == 0:
log.info(f'{len(videos)} videos found in {video_root}')
self.duration_sec = duration_sec
self.clip_expected_length = int(_CLIP_FPS * self.duration_sec)
self.sync_expected_length = int(_SYNC_FPS * self.duration_sec)
self.clip_augment = v2.Compose([
v2.Resize((_CLIP_SIZE, _CLIP_SIZE), interpolation=v2.InterpolationMode.BICUBIC),
v2.ToImage(),
v2.ToDtype(torch.float32, scale=True),
])
self.sync_augment = v2.Compose([
v2.Resize((_SYNC_SIZE, _SYNC_SIZE), interpolation=v2.InterpolationMode.BICUBIC),
v2.CenterCrop(_SYNC_SIZE),
v2.ToImage(),
v2.ToDtype(torch.float32, scale=True),
v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
])
self.videos = videos
def sample(self, idx: int) -> dict[str, torch.Tensor]:
video_id = self.videos[idx]
caption = self.captions[video_id]
reader = StreamingMediaDecoder(self.video_root / (video_id + '.mp4'))
reader.add_basic_video_stream(
frames_per_chunk=int(_CLIP_FPS * self.duration_sec),
frame_rate=_CLIP_FPS,
format='rgb24',
)
reader.add_basic_video_stream(
frames_per_chunk=int(_SYNC_FPS * self.duration_sec),
frame_rate=_SYNC_FPS,
format='rgb24',
)
reader.fill_buffer()
data_chunk = reader.pop_chunks()
clip_chunk = data_chunk[0]
sync_chunk = data_chunk[1]
if clip_chunk is None:
raise RuntimeError(f'CLIP video returned None {video_id}')
if clip_chunk.shape[0] < self.clip_expected_length:
raise RuntimeError(f'CLIP video too short {video_id}')
if sync_chunk is None:
raise RuntimeError(f'Sync video returned None {video_id}')
if sync_chunk.shape[0] < self.sync_expected_length:
raise RuntimeError(f'Sync video too short {video_id}')
# truncate the video
clip_chunk = clip_chunk[:self.clip_expected_length]
if clip_chunk.shape[0] != self.clip_expected_length:
raise RuntimeError(f'CLIP video wrong length {video_id}, '
f'expected {self.clip_expected_length}, '
f'got {clip_chunk.shape[0]}')
clip_chunk = self.clip_augment(clip_chunk)
sync_chunk = sync_chunk[:self.sync_expected_length]
if sync_chunk.shape[0] != self.sync_expected_length:
raise RuntimeError(f'Sync video wrong length {video_id}, '
f'expected {self.sync_expected_length}, '
f'got {sync_chunk.shape[0]}')
sync_chunk = self.sync_augment(sync_chunk)
data = {
'name': video_id,
'caption': caption,
'clip_video': clip_chunk,
'sync_video': sync_chunk,
}
return data
def __getitem__(self, idx: int) -> dict[str, torch.Tensor]:
return self.sample(idx)
def __len__(self):
return len(self.captions)