import logging import os from pathlib import Path from typing import Optional, Union import pandas as pd import torch import torchaudio from torch.utils.data.dataset import Dataset from torchvision.transforms import v2 from torio.io import StreamingMediaDecoder from mmaudio.utils.dist_utils import local_rank log = logging.getLogger() _CLIP_SIZE = 384 _CLIP_FPS = 8.0 _SYNC_SIZE = 224 _SYNC_FPS = 25.0 class VGGSound(Dataset): def __init__( self, root: Union[str, Path], *, tsv_path: Union[str, Path] = 'sets/vgg3-train.tsv', sample_rate: int = 16_000, duration_sec: float = 8.0, audio_samples: Optional[int] = None, normalize_audio: bool = False, ): self.root = Path(root) self.normalize_audio = normalize_audio if audio_samples is None: self.audio_samples = int(sample_rate * duration_sec) else: self.audio_samples = audio_samples effective_duration = audio_samples / sample_rate # make sure the duration is close enough, within 15ms assert abs(effective_duration - duration_sec) < 0.015, \ f'audio_samples {audio_samples} does not match duration_sec {duration_sec}' ####videos = sorted(os.listdir(self.root)) ####videos = set([Path(v).stem for v in videos]) # remove extensions ####self.labels = {} ####self.videos = [] ####missing_videos = [] #### ##### read the tsv for subset information ####df_list = pd.read_csv(tsv_path, sep='\t', dtype={'id': str}).to_dict('records') ####for record in df_list: #### id = record['id'] #### label = record['label'] #### if id in videos: #### self.labels[id] = label #### self.videos.append(id) #### else: #### missing_videos.append(id) self.labels = [] self.videos = [] with open(tsv_path, "r") as fr: for line in fr.readlines(): video_path, label = line.strip().split("\t") self.labels.append("the sound of " + label) self.videos.append(video_path) if local_rank == 0: ####log.info(f'{len(videos)} videos found in {root}') log.info(f'{len(self.videos)} videos found in {tsv_path}') ####log.info(f'{len(missing_videos)} videos missing in {root}') self.sample_rate = sample_rate self.duration_sec = duration_sec self.expected_audio_length = audio_samples self.clip_expected_length = int(_CLIP_FPS * self.duration_sec) self.sync_expected_length = int(_SYNC_FPS * self.duration_sec) self.clip_transform = v2.Compose([ v2.Resize((_CLIP_SIZE, _CLIP_SIZE), interpolation=v2.InterpolationMode.BICUBIC), v2.ToImage(), v2.ToDtype(torch.float32, scale=True), ]) self.sync_transform = v2.Compose([ v2.Resize(_SYNC_SIZE, interpolation=v2.InterpolationMode.BICUBIC), v2.CenterCrop(_SYNC_SIZE), v2.ToImage(), v2.ToDtype(torch.float32, scale=True), v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), ]) self.resampler = {} def sample(self, idx: int) -> dict[str, torch.Tensor]: ####video_id = self.videos[idx] ####label = self.labels[video_id] video_path = Path(self.videos[idx]).expanduser() label = self.labels[idx] video_id = video_path.stem ####reader = StreamingMediaDecoder(self.root / (video_id + '.mp4')) reader = StreamingMediaDecoder(video_path) reader.add_basic_video_stream( frames_per_chunk=int(_CLIP_FPS * self.duration_sec), frame_rate=_CLIP_FPS, format='rgb24', ) reader.add_basic_video_stream( frames_per_chunk=int(_SYNC_FPS * self.duration_sec), frame_rate=_SYNC_FPS, format='rgb24', ) reader.add_basic_audio_stream(frames_per_chunk=2**30, ) reader.fill_buffer() data_chunk = reader.pop_chunks() clip_chunk = data_chunk[0] sync_chunk = data_chunk[1] audio_chunk = data_chunk[2] if clip_chunk is None: raise RuntimeError(f'CLIP video returned None {video_id}') ####repeat = self.clip_expected_length // clip_chunk.shape[0] + 2 ####clip_chunk = clip_chunk.repeat(repeat,1,1,1) if clip_chunk.shape[0] < self.clip_expected_length: raise RuntimeError( f'CLIP video too short {video_id}, expected {self.clip_expected_length}, got {clip_chunk.shape[0]}' ) if sync_chunk is None: raise RuntimeError(f'Sync video returned None {video_id}') ####sync_chunk = sync_chunk.repeat(repeat,1,1,1) if sync_chunk.shape[0] < self.sync_expected_length: raise RuntimeError( f'Sync video too short {video_id}, expected {self.sync_expected_length}, got {sync_chunk.shape[0]}' ) # process audio sample_rate = int(reader.get_out_stream_info(2).sample_rate) audio_chunk = audio_chunk.transpose(0, 1) audio_chunk = audio_chunk.mean(dim=0) # mono if self.normalize_audio: abs_max = audio_chunk.abs().max() audio_chunk = audio_chunk / abs_max * 0.95 if abs_max <= 1e-6: raise RuntimeError(f'Audio is silent {video_id}') # resample if sample_rate == self.sample_rate: audio_chunk = audio_chunk else: if sample_rate not in self.resampler: # https://pytorch.org/audio/stable/tutorials/audio_resampling_tutorial.html#kaiser-best self.resampler[sample_rate] = torchaudio.transforms.Resample( sample_rate, self.sample_rate, lowpass_filter_width=64, rolloff=0.9475937167399596, resampling_method='sinc_interp_kaiser', beta=14.769656459379492, ) audio_chunk = self.resampler[sample_rate](audio_chunk) ####audio_chunk = audio_chunk.repeat(repeat) if audio_chunk.shape[0] < self.expected_audio_length: raise RuntimeError(f'Audio too short {video_id}') audio_chunk = audio_chunk[:self.expected_audio_length] # truncate the video clip_chunk = clip_chunk[:self.clip_expected_length] if clip_chunk.shape[0] != self.clip_expected_length: raise RuntimeError(f'CLIP video wrong length {video_id}, ' f'expected {self.clip_expected_length}, ' f'got {clip_chunk.shape[0]}') clip_chunk = self.clip_transform(clip_chunk) sync_chunk = sync_chunk[:self.sync_expected_length] if sync_chunk.shape[0] != self.sync_expected_length: raise RuntimeError(f'Sync video wrong length {video_id}, ' f'expected {self.sync_expected_length}, ' f'got {sync_chunk.shape[0]}') sync_chunk = self.sync_transform(sync_chunk) data = { 'id': video_id, 'caption': label, 'audio': audio_chunk, 'clip_video': clip_chunk, 'sync_video': sync_chunk, } return data def __getitem__(self, idx: int) -> dict[str, torch.Tensor]: try: return self.sample(idx) except Exception as e: log.error(f'Error loading video {self.videos[idx]}: {e}') return None def __len__(self): return len(self.labels)