File size: 9,361 Bytes
a930e1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import bisect
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
plt.switch_backend('agg')
from einops.einops import rearrange
import torch.nn.functional as F


def _compute_conf_thresh(data):
    dataset_name = data['dataset_name'][0].lower()
    if dataset_name == 'scannet':
        thr = 5e-4
    elif dataset_name == 'megadepth':
        thr = 1e-4
    elif dataset_name == 'vistir':
        thr = 5e-4
    else:
        raise ValueError(f'Unknown dataset: {dataset_name}')
    return thr


# --- VISUALIZATION --- #

def make_matching_figure(

        img0, img1, mkpts0, mkpts1, color,

        kpts0=None, kpts1=None, text=[], dpi=75, path=None):
    # draw image pair
    assert mkpts0.shape[0] == mkpts1.shape[0], f'mkpts0: {mkpts0.shape[0]} v.s. mkpts1: {mkpts1.shape[0]}'
    fig, axes = plt.subplots(1, 2, figsize=(10, 6), dpi=dpi)
    axes[0].imshow(img0, cmap='gray')
    axes[1].imshow(img1, cmap='gray')
    for i in range(2):   # clear all frames
        axes[i].get_yaxis().set_ticks([])
        axes[i].get_xaxis().set_ticks([])
        for spine in axes[i].spines.values():
            spine.set_visible(False)
    plt.tight_layout(pad=1)
    
    if kpts0 is not None:
        assert kpts1 is not None
        axes[0].scatter(kpts0[:, 0], kpts0[:, 1], c='w', s=2)
        axes[1].scatter(kpts1[:, 0], kpts1[:, 1], c='w', s=2)

    # draw matches
    if mkpts0.shape[0] != 0 and mkpts1.shape[0] != 0:
        fig.canvas.draw()
        transFigure = fig.transFigure.inverted()
        fkpts0 = transFigure.transform(axes[0].transData.transform(mkpts0))
        fkpts1 = transFigure.transform(axes[1].transData.transform(mkpts1))
        fig.lines = [matplotlib.lines.Line2D((fkpts0[i, 0], fkpts1[i, 0]),
                                            (fkpts0[i, 1], fkpts1[i, 1]),
                                            transform=fig.transFigure, c=color[i], linewidth=1)
                                        for i in range(len(mkpts0))]
        
        axes[0].scatter(mkpts0[:, 0], mkpts0[:, 1], c=color, s=4)
        axes[1].scatter(mkpts1[:, 0], mkpts1[:, 1], c=color, s=4)

    # put txts
    txt_color = 'k' if img0[:100, :200].mean() > 200 else 'w'
    fig.text(
        0.01, 0.99, '\n'.join(text), transform=fig.axes[0].transAxes,
        fontsize=15, va='top', ha='left', color=txt_color)

    # save or return figure
    if path:
        plt.savefig(str(path), bbox_inches='tight', pad_inches=0)
        plt.close()
    else:
        return fig


def _make_evaluation_figure(data, b_id, alpha='dynamic', ret_dict=None):
    b_mask = data['m_bids'] == b_id
    conf_thr = _compute_conf_thresh(data)
    
    img0 = (data['image0'][b_id][0].cpu().numpy() * 255).round().astype(np.int32)
    img1 = (data['image1'][b_id][0].cpu().numpy() * 255).round().astype(np.int32)
    kpts0 = data['mkpts0_f'][b_mask].cpu().numpy()
    kpts1 = data['mkpts1_f'][b_mask].cpu().numpy()
    
    # for megadepth, we visualize matches on the resized image
    if 'scale0' in data:
        kpts0 = kpts0 / data['scale0'][b_id].cpu().numpy()[[1, 0]]
        kpts1 = kpts1 / data['scale1'][b_id].cpu().numpy()[[1, 0]]

    epi_errs = data['epi_errs'][b_mask].cpu().numpy()
    correct_mask = epi_errs < conf_thr
    precision = np.mean(correct_mask) if len(correct_mask) > 0 else 0
    n_correct = np.sum(correct_mask)

    # matching info
    if alpha == 'dynamic':
        alpha = dynamic_alpha(len(correct_mask))
    color = error_colormap(epi_errs, conf_thr, alpha=alpha)
    
    text = [
        f'#Matches {len(kpts0)}',
        f'Precision({conf_thr:.2e}) ({100 * precision:.1f}%): {n_correct}/{len(kpts0)}']
    if ret_dict is not None:
        text += [f"t_err: {ret_dict['metrics']['t_errs'][b_id]:.2f}",
                f"R_err: {ret_dict['metrics']['R_errs'][b_id]:.2f}"]
    
    # make the figure
    figure = make_matching_figure(img0, img1, kpts0, kpts1,
                                  color, text=text)
    return figure

def _make_confidence_figure(data, b_id):
    # TODO: Implement confidence figure
    raise NotImplementedError()


def make_matching_figures(data, config, mode='evaluation', ret_dict=None):
    """ Make matching figures for a batch.

    

    Args:

        data (Dict): a batch updated by PL_XoFTR.

        config (Dict): matcher config

    Returns:

        figures (Dict[str, List[plt.figure]]

    """
    assert mode in ['evaluation', 'confidence']  # 'confidence'
    figures = {mode: []}
    for b_id in range(data['image0'].size(0)):
        if mode == 'evaluation':
            fig = _make_evaluation_figure(
                data, b_id,
                alpha=config.TRAINER.PLOT_MATCHES_ALPHA, ret_dict=ret_dict)
        elif mode == 'confidence':
            fig = _make_confidence_figure(data, b_id)
        else:
            raise ValueError(f'Unknown plot mode: {mode}')
        figures[mode].append(fig)
    return figures

def make_mae_figures(data):
    """ Make mae figures for a batch.

    

    Args:

        data (Dict): a batch updated by PL_XoFTR_Pretrain.

    Returns:

        figures (List[plt.figure])

    """
    
    scale = data['hw0_i'][0] // data['hw0_f'][0]
    W_f = data["W_f"]

    pred0, pred1 = data["pred0"], data["pred1"]
    target0, target1 = data["target0"], data["target1"]

    # replace masked regions with predictions
    target0[data['b_ids'][data["ids_image0"]], data['i_ids'][data["ids_image0"]]] = pred0[data["ids_image0"]]
    target1[data['b_ids'][data["ids_image1"]], data['j_ids'][data["ids_image1"]]] = pred1[data["ids_image1"]]

    # remove excess parts, since the 10x10 windows have overlaping regions
    target0 = rearrange(target0, 'n l (h w) (p q c) -> n c (h p) (w q) l', h=W_f, w=W_f, p=scale, q=scale, c=1)
    target1 = rearrange(target1, 'n l (h w) (p q c) -> n c (h p) (w q) l', h=W_f, w=W_f, p=scale, q=scale, c=1) 
    # target0[:,:,-scale:,:] = 0.0
    # target0[:,:,:,-scale:] = 0.0
    # target1[:,:,-scale:,:] = 0.0
    # target1[:,:,:,-scale:] = 0.0
    gap = scale //2
    target0[:,:,-gap:,:] = 0.0
    target0[:,:,:,-gap:] = 0.0
    target1[:,:,-gap:,:] = 0.0
    target1[:,:,:,-gap:] = 0.0
    target0[:,:,:gap,:] = 0.0
    target0[:,:,:,:gap] = 0.0
    target1[:,:,:gap,:] = 0.0
    target1[:,:,:,:gap] = 0.0
    target0 = rearrange(target0, 'n c (h p) (w q) l -> n (c h p w q) l', h=W_f, w=W_f, p=scale, q=scale, c=1)
    target1 = rearrange(target1, 'n c (h p) (w q) l -> n (c h p w q) l', h=W_f, w=W_f, p=scale, q=scale, c=1)

    # windows to image 
    kernel_size = [int(W_f*scale), int(W_f*scale)]
    padding = kernel_size[0]//2 -1 if kernel_size[0] % 2 == 0 else kernel_size[0]//2
    stride = data['hw0_i'][0] // data['hw0_c'][0]
    target0 = F.fold(target0, output_size=data["image0"].shape[2:], kernel_size=kernel_size, stride=stride, padding=padding)
    target1 = F.fold(target1, output_size=data["image1"].shape[2:], kernel_size=kernel_size, stride=stride, padding=padding)

    # add mean and std of original image for visualization
    if ("image0_norm" in data) and ("image1_norm" in data):
        target0 = target0 * data["image0_std"] + data["image0_mean"]
        target1 = target1 * data["image1_std"] + data["image1_mean"]
        masked_image0 = data["masked_image0"] * data["image0_std"].to("cpu") + data["image0_mean"].to("cpu")
        masked_image1 = data["masked_image1"] * data["image1_std"].to("cpu") + data["image1_mean"].to("cpu")
    else:
        masked_image0 = data["masked_image0"] 
        masked_image1 = data["masked_image1"] 

    figures = []
    # Create a list of these tensors
    image_groups = [[data["image0"], masked_image0, target0],
                     [data["image1"], masked_image1, target1]]

    # Iterate through the batches
    for batch_idx in range(image_groups[0][0].shape[0]):  # Assuming batch dimension is the first dimension
        fig, axs = plt.subplots(2, 3, figsize=(9, 6))  
        for i, image_tensors in enumerate(image_groups):
            for j, img_tensor in enumerate(image_tensors):
                img = img_tensor[batch_idx, 0, :, :].detach().cpu().numpy()  # Get the image data as a NumPy array
                axs[i,j].imshow(img, cmap='gray', vmin=0, vmax=1)  # Display the image in a subplot with correct colormap
                axs[i,j].axis('off')  # Turn off axis labels
        fig.tight_layout()
        figures.append(fig)
    return figures

def dynamic_alpha(n_matches,

                  milestones=[0, 300, 1000, 2000],

                  alphas=[1.0, 0.8, 0.4, 0.2]):
    if n_matches == 0:
        return 1.0
    ranges = list(zip(alphas, alphas[1:] + [None]))
    loc = bisect.bisect_right(milestones, n_matches) - 1
    _range = ranges[loc]
    if _range[1] is None:
        return _range[0]
    return _range[1] + (milestones[loc + 1] - n_matches) / (
        milestones[loc + 1] - milestones[loc]) * (_range[0] - _range[1])


def error_colormap(err, thr, alpha=1.0):
    assert alpha <= 1.0 and alpha > 0, f"Invaid alpha value: {alpha}"
    x = 1 - np.clip(err / (thr * 2), 0, 1)
    return np.clip(
        np.stack([2-x*2, x*2, np.zeros_like(x), np.ones_like(x)*alpha], -1), 0, 1)