File size: 3,067 Bytes
a930e1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import torch.nn as nn
import torch.nn.functional as F


def conv1x1(in_planes, out_planes, stride=1):
    """1x1 convolution without padding"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, padding=0, bias=False)


def conv3x3(in_planes, out_planes, stride=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)


class BasicBlock(nn.Module):
    def __init__(self, in_planes, planes, stride=1):
        super().__init__()
        self.conv1 = conv3x3(in_planes, planes, stride)
        self.conv2 = conv3x3(planes, planes)
        self.bn1 = nn.BatchNorm2d(planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)

        if stride == 1:
            self.downsample = None
        else:
            self.downsample = nn.Sequential(
                conv1x1(in_planes, planes, stride=stride),
                nn.BatchNorm2d(planes)
            )

    def forward(self, x):
        y = x
        y = self.relu(self.bn1(self.conv1(y)))
        y = self.bn2(self.conv2(y))

        if self.downsample is not None:
            x = self.downsample(x)

        return self.relu(x+y)

class ResNet_8_2(nn.Module):
    """

    ResNet, output resolution are 1/8 and 1/2.

    Each block has 2 layers.

    """

    def __init__(self, config):
        super().__init__()
        # Config
        block = BasicBlock
        initial_dim = config['initial_dim']
        block_dims = config['block_dims']

        # Class Variable
        self.in_planes = initial_dim

        # Networks
        self.conv1 = nn.Conv2d(1, initial_dim, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(initial_dim)
        self.relu = nn.ReLU(inplace=True)

        self.layer1 = self._make_layer(block, block_dims[0], stride=1)  # 1/2
        self.layer2 = self._make_layer(block, block_dims[1], stride=2)  # 1/4
        self.layer3 = self._make_layer(block, block_dims[2], stride=2)  # 1/8

        self.layer3_outconv = conv1x1(block_dims[2], block_dims[2])
        

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

    def _make_layer(self, block, dim, stride=1):
        layer1 = block(self.in_planes, dim, stride=stride)
        layer2 = block(dim, dim, stride=1)
        layers = (layer1, layer2)

        self.in_planes = dim
        return nn.Sequential(*layers)

    def forward(self, x):
        # ResNet Backbone
        x0 = self.relu(self.bn1(self.conv1(x)))
        x1 = self.layer1(x0)  # 1/2
        x2 = self.layer2(x1)  # 1/4
        x3 = self.layer3(x2)  # 1/8

        x3_out = self.layer3_outconv(x3)

        return x3_out, x2, x1