Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,720 Bytes
a930e1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops.einops import rearrange
INF = 1e9
def mask_border(m, b: int, v):
""" Mask borders with value
Args:
m (torch.Tensor): [N, H0, W0, H1, W1]
b (int)
v (m.dtype)
"""
if b <= 0:
return
m[:, :b] = v
m[:, :, :b] = v
m[:, :, :, :b] = v
m[:, :, :, :, :b] = v
m[:, -b:] = v
m[:, :, -b:] = v
m[:, :, :, -b:] = v
m[:, :, :, :, -b:] = v
def mask_border_with_padding(m, bd, v, p_m0, p_m1):
if bd <= 0:
return
m[:, :bd] = v
m[:, :, :bd] = v
m[:, :, :, :bd] = v
m[:, :, :, :, :bd] = v
h0s, w0s = p_m0.sum(1).max(-1)[0].int(), p_m0.sum(-1).max(-1)[0].int()
h1s, w1s = p_m1.sum(1).max(-1)[0].int(), p_m1.sum(-1).max(-1)[0].int()
for b_idx, (h0, w0, h1, w1) in enumerate(zip(h0s, w0s, h1s, w1s)):
m[b_idx, h0 - bd:] = v
m[b_idx, :, w0 - bd:] = v
m[b_idx, :, :, h1 - bd:] = v
m[b_idx, :, :, :, w1 - bd:] = v
def compute_max_candidates(p_m0, p_m1):
"""Compute the max candidates of all pairs within a batch
Args:
p_m0, p_m1 (torch.Tensor): padded masks
"""
h0s, w0s = p_m0.sum(1).max(-1)[0], p_m0.sum(-1).max(-1)[0]
h1s, w1s = p_m1.sum(1).max(-1)[0], p_m1.sum(-1).max(-1)[0]
max_cand = torch.sum(
torch.min(torch.stack([h0s * w0s, h1s * w1s], -1), -1)[0])
return max_cand
class CoarseMatching(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
# general config
d_model = config['d_model']
self.thr = config['thr']
self.inference = config['inference']
self.border_rm = config['border_rm']
# -- # for trainig fine-level XoFTR
self.train_coarse_percent = config['train_coarse_percent']
self.train_pad_num_gt_min = config['train_pad_num_gt_min']
self.final_proj = nn.Linear(d_model, d_model, bias=True)
self.temperature = config['dsmax_temperature']
def forward(self, feat_c0, feat_c1, data, mask_c0=None, mask_c1=None):
"""
Args:
feat0 (torch.Tensor): [N, L, C]
feat1 (torch.Tensor): [N, S, C]
data (dict)
mask_c0 (torch.Tensor): [N, L] (optional)
mask_c1 (torch.Tensor): [N, S] (optional)
Update:
data (dict): {
'b_ids' (torch.Tensor): [M'],
'i_ids' (torch.Tensor): [M'],
'j_ids' (torch.Tensor): [M'],
'gt_mask' (torch.Tensor): [M'],
'mkpts0_c' (torch.Tensor): [M, 2],
'mkpts1_c' (torch.Tensor): [M, 2],
'mconf' (torch.Tensor): [M]}
NOTE: M' != M during training.
"""
feat_c0 = self.final_proj(feat_c0)
feat_c1 = self.final_proj(feat_c1)
# normalize
feat_c0, feat_c1 = map(lambda feat: feat / feat.shape[-1]**.5,
[feat_c0, feat_c1])
sim_matrix = torch.einsum("nlc,nsc->nls", feat_c0,
feat_c1) / self.temperature
if mask_c0 is not None:
sim_matrix.masked_fill_(
~(mask_c0[..., None] * mask_c1[:, None]).bool(),
-INF)
if self.inference:
# predict coarse matches from conf_matrix
data.update(**self.get_coarse_match_inference(sim_matrix, data))
else:
conf_matrix_0_to_1 = F.softmax(sim_matrix, 2)
conf_matrix_1_to_0 = F.softmax(sim_matrix, 1)
data.update({'conf_matrix_0_to_1': conf_matrix_0_to_1,
'conf_matrix_1_to_0': conf_matrix_1_to_0
})
# predict coarse matches from conf_matrix
data.update(**self.get_coarse_match_training(conf_matrix_0_to_1, conf_matrix_1_to_0, data))
@torch.no_grad()
def get_coarse_match_training(self, conf_matrix_0_to_1, conf_matrix_1_to_0, data):
"""
Args:
conf_matrix_0_to_1 (torch.Tensor): [N, L, S]
conf_matrix_1_to_0 (torch.Tensor): [N, L, S]
data (dict): with keys ['hw0_i', 'hw1_i', 'hw0_c', 'hw1_c']
Returns:
coarse_matches (dict): {
'b_ids' (torch.Tensor): [M'],
'i_ids' (torch.Tensor): [M'],
'j_ids' (torch.Tensor): [M'],
'gt_mask' (torch.Tensor): [M'],
'm_bids' (torch.Tensor): [M],
'mkpts0_c' (torch.Tensor): [M, 2],
'mkpts1_c' (torch.Tensor): [M, 2],
'mconf' (torch.Tensor): [M]}
"""
axes_lengths = {
'h0c': data['hw0_c'][0],
'w0c': data['hw0_c'][1],
'h1c': data['hw1_c'][0],
'w1c': data['hw1_c'][1]
}
_device = conf_matrix_0_to_1.device
# confidence thresholding
# {(nearest neighbour for 0 to 1) U (nearest neighbour for 1 to 0)}
mask = torch.logical_or((conf_matrix_0_to_1 > self.thr) * (conf_matrix_0_to_1 == conf_matrix_0_to_1.max(dim=2, keepdim=True)[0]),
(conf_matrix_1_to_0 > self.thr) * (conf_matrix_1_to_0 == conf_matrix_1_to_0.max(dim=1, keepdim=True)[0]))
mask = rearrange(mask, 'b (h0c w0c) (h1c w1c) -> b h0c w0c h1c w1c',
**axes_lengths)
if 'mask0' not in data:
mask_border(mask, self.border_rm, False)
else:
mask_border_with_padding(mask, self.border_rm, False,
data['mask0'], data['mask1'])
mask = rearrange(mask, 'b h0c w0c h1c w1c -> b (h0c w0c) (h1c w1c)',
**axes_lengths)
# find all valid coarse matches
b_ids, i_ids, j_ids = mask.nonzero(as_tuple=True)
mconf = torch.maximum(conf_matrix_0_to_1[b_ids, i_ids, j_ids], conf_matrix_1_to_0[b_ids, i_ids, j_ids])
# random sampling of training samples for fine-level XoFTR
# (optional) pad samples with gt coarse-level matches
if self.training:
# NOTE:
# the sampling is performed across all pairs in a batch without manually balancing
# samples for fine-level increases w.r.t. batch_size
if 'mask0' not in data:
num_candidates_max = mask.size(0) * max(
mask.size(1), mask.size(2))
else:
num_candidates_max = compute_max_candidates(
data['mask0'], data['mask1'])
num_matches_train = int(num_candidates_max *
self.train_coarse_percent)
num_matches_pred = len(b_ids)
assert self.train_pad_num_gt_min < num_matches_train, "min-num-gt-pad should be less than num-train-matches"
# pred_indices is to select from prediction
if num_matches_pred <= num_matches_train - self.train_pad_num_gt_min:
pred_indices = torch.arange(num_matches_pred, device=_device)
else:
pred_indices = torch.randint(
num_matches_pred,
(num_matches_train - self.train_pad_num_gt_min, ),
device=_device)
# gt_pad_indices is to select from gt padding. e.g. max(3787-4800, 200)
gt_pad_indices = torch.randint(
len(data['spv_b_ids']),
(max(num_matches_train - num_matches_pred,
self.train_pad_num_gt_min), ),
device=_device)
mconf_gt = torch.zeros(len(data['spv_b_ids']), device=_device) # set conf of gt paddings to all zero
b_ids, i_ids, j_ids, mconf = map(
lambda x, y: torch.cat([x[pred_indices], y[gt_pad_indices]],
dim=0),
*zip([b_ids, data['spv_b_ids']], [i_ids, data['spv_i_ids']],
[j_ids, data['spv_j_ids']], [mconf, mconf_gt]))
# these matches are selected patches that feed into fine-level network
coarse_matches = {'b_ids': b_ids, 'i_ids': i_ids, 'j_ids': j_ids}
# update with matches in original image resolution
scale = data['hw0_i'][0] / data['hw0_c'][0]
scale0 = scale * data['scale0'][b_ids] if 'scale0' in data else scale
scale1 = scale * data['scale1'][b_ids] if 'scale1' in data else scale
mkpts0_c = torch.stack(
[i_ids % data['hw0_c'][1], torch.div(i_ids, data['hw0_c'][1], rounding_mode='trunc')],
dim=1) * scale0
mkpts1_c = torch.stack(
[j_ids % data['hw1_c'][1], torch.div(j_ids, data['hw1_c'][1], rounding_mode='trunc')],
dim=1) * scale1
# these matches is the current prediction (for visualization)
coarse_matches.update({
'gt_mask': mconf == 0,
'm_bids': b_ids[mconf != 0], # mconf == 0 => gt matches
'mkpts0_c': mkpts0_c[mconf != 0],
'mkpts1_c': mkpts1_c[mconf != 0],
'mconf': mconf[mconf != 0]
})
return coarse_matches
@torch.no_grad()
def get_coarse_match_inference(self, sim_matrix, data):
"""
Args:
sim_matrix (torch.Tensor): [N, L, S]
data (dict): with keys ['hw0_i', 'hw1_i', 'hw0_c', 'hw1_c']
Returns:
coarse_matches (dict): {
'b_ids' (torch.Tensor): [M'],
'i_ids' (torch.Tensor): [M'],
'j_ids' (torch.Tensor): [M'],
'gt_mask' (torch.Tensor): [M'],
'm_bids' (torch.Tensor): [M],
'mkpts0_c' (torch.Tensor): [M, 2],
'mkpts1_c' (torch.Tensor): [M, 2],
'mconf' (torch.Tensor): [M]}
"""
axes_lengths = {
'h0c': data['hw0_c'][0],
'w0c': data['hw0_c'][1],
'h1c': data['hw1_c'][0],
'w1c': data['hw1_c'][1]
}
# softmax for 0 to 1
conf_matrix_ = F.softmax(sim_matrix, 2)
# confidence thresholding and nearest neighbour for 0 to 1
mask = (conf_matrix_ > self.thr) * (conf_matrix_ == conf_matrix_.max(dim=2, keepdim=True)[0])
# unlike training, reuse the same conf martix to decrease the vram consumption
# softmax for 0 to 1
conf_matrix_ = F.softmax(sim_matrix, 1)
# update mask {(nearest neighbour for 0 to 1) U (nearest neighbour for 1 to 0)}
mask = torch.logical_or(mask,
(conf_matrix_ > self.thr) * (conf_matrix_ == conf_matrix_.max(dim=1, keepdim=True)[0]))
mask = rearrange(mask, 'b (h0c w0c) (h1c w1c) -> b h0c w0c h1c w1c',
**axes_lengths)
if 'mask0' not in data:
mask_border(mask, self.border_rm, False)
else:
mask_border_with_padding(mask, self.border_rm, False,
data['mask0'], data['mask1'])
mask = rearrange(mask, 'b h0c w0c h1c w1c -> b (h0c w0c) (h1c w1c)',
**axes_lengths)
# find all valid coarse matches
b_ids, i_ids, j_ids = mask.nonzero(as_tuple=True)
# mconf = torch.maximum(conf_matrix_0_to_1[b_ids, i_ids, j_ids], conf_matrix_1_to_0[b_ids, i_ids, j_ids])
# these matches are selected patches that feed into fine-level network
coarse_matches = {'b_ids': b_ids, 'i_ids': i_ids, 'j_ids': j_ids}
# update with matches in original image resolution
scale = data['hw0_i'][0] / data['hw0_c'][0]
scale0 = scale * data['scale0'][b_ids] if 'scale0' in data else scale
scale1 = scale * data['scale1'][b_ids] if 'scale1' in data else scale
mkpts0_c = torch.stack(
[i_ids % data['hw0_c'][1], torch.div(i_ids, data['hw0_c'][1], rounding_mode='trunc')],
dim=1) * scale0
mkpts1_c = torch.stack(
[j_ids % data['hw1_c'][1], torch.div(j_ids, data['hw1_c'][1], rounding_mode='trunc')],
dim=1) * scale1
# these matches are the current coarse level predictions
coarse_matches.update({
'm_bids': b_ids, # mconf == 0 => gt matches
'mkpts0_c': mkpts0_c,
'mkpts1_c': mkpts1_c,
})
return coarse_matches
|