File size: 12,720 Bytes
a930e1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops.einops import rearrange

INF = 1e9

def mask_border(m, b: int, v):
    """ Mask borders with value

    Args:

        m (torch.Tensor): [N, H0, W0, H1, W1]

        b (int)

        v (m.dtype)

    """
    if b <= 0:
        return

    m[:, :b] = v
    m[:, :, :b] = v
    m[:, :, :, :b] = v
    m[:, :, :, :, :b] = v
    m[:, -b:] = v
    m[:, :, -b:] = v
    m[:, :, :, -b:] = v
    m[:, :, :, :, -b:] = v


def mask_border_with_padding(m, bd, v, p_m0, p_m1):
    if bd <= 0:
        return

    m[:, :bd] = v
    m[:, :, :bd] = v
    m[:, :, :, :bd] = v
    m[:, :, :, :, :bd] = v

    h0s, w0s = p_m0.sum(1).max(-1)[0].int(), p_m0.sum(-1).max(-1)[0].int()
    h1s, w1s = p_m1.sum(1).max(-1)[0].int(), p_m1.sum(-1).max(-1)[0].int()
    for b_idx, (h0, w0, h1, w1) in enumerate(zip(h0s, w0s, h1s, w1s)):
        m[b_idx, h0 - bd:] = v
        m[b_idx, :, w0 - bd:] = v
        m[b_idx, :, :, h1 - bd:] = v
        m[b_idx, :, :, :, w1 - bd:] = v


def compute_max_candidates(p_m0, p_m1):
    """Compute the max candidates of all pairs within a batch

    

    Args:

        p_m0, p_m1 (torch.Tensor): padded masks

    """
    h0s, w0s = p_m0.sum(1).max(-1)[0], p_m0.sum(-1).max(-1)[0]
    h1s, w1s = p_m1.sum(1).max(-1)[0], p_m1.sum(-1).max(-1)[0]
    max_cand = torch.sum(
        torch.min(torch.stack([h0s * w0s, h1s * w1s], -1), -1)[0])
    return max_cand


class CoarseMatching(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        # general config
        d_model = config['d_model']
        self.thr = config['thr']
        self.inference = config['inference']
        self.border_rm = config['border_rm']
        # -- # for trainig fine-level XoFTR
        self.train_coarse_percent = config['train_coarse_percent']
        self.train_pad_num_gt_min = config['train_pad_num_gt_min']
        self.final_proj = nn.Linear(d_model, d_model, bias=True)

        self.temperature = config['dsmax_temperature']

    def forward(self, feat_c0, feat_c1, data, mask_c0=None, mask_c1=None):
        """

        Args:

            feat0 (torch.Tensor): [N, L, C]

            feat1 (torch.Tensor): [N, S, C]

            data (dict)

            mask_c0 (torch.Tensor): [N, L] (optional)

            mask_c1 (torch.Tensor): [N, S] (optional)

        Update:

            data (dict): {

                'b_ids' (torch.Tensor): [M'],

                'i_ids' (torch.Tensor): [M'],

                'j_ids' (torch.Tensor): [M'],

                'gt_mask' (torch.Tensor): [M'],

                'mkpts0_c' (torch.Tensor): [M, 2],

                'mkpts1_c' (torch.Tensor): [M, 2],

                'mconf' (torch.Tensor): [M]}

            NOTE: M' != M during training.

        """

        feat_c0 = self.final_proj(feat_c0)
        feat_c1 = self.final_proj(feat_c1)

        # normalize
        feat_c0, feat_c1 = map(lambda feat: feat / feat.shape[-1]**.5,
                               [feat_c0, feat_c1])

        sim_matrix = torch.einsum("nlc,nsc->nls", feat_c0,
                                    feat_c1) / self.temperature
        if mask_c0 is not None:
            sim_matrix.masked_fill_(
                ~(mask_c0[..., None] * mask_c1[:, None]).bool(),
                -INF)
        if self.inference:
            # predict coarse matches from conf_matrix
            data.update(**self.get_coarse_match_inference(sim_matrix, data))
        else:
            conf_matrix_0_to_1 = F.softmax(sim_matrix, 2) 
            conf_matrix_1_to_0 = F.softmax(sim_matrix, 1)
            data.update({'conf_matrix_0_to_1': conf_matrix_0_to_1,
                        'conf_matrix_1_to_0': conf_matrix_1_to_0
                        })
            # predict coarse matches from conf_matrix
            data.update(**self.get_coarse_match_training(conf_matrix_0_to_1, conf_matrix_1_to_0, data))
        
    @torch.no_grad()
    def get_coarse_match_training(self, conf_matrix_0_to_1, conf_matrix_1_to_0, data):
        """

        Args:

            conf_matrix_0_to_1 (torch.Tensor): [N, L, S]

            conf_matrix_1_to_0 (torch.Tensor): [N, L, S]

            data (dict): with keys ['hw0_i', 'hw1_i', 'hw0_c', 'hw1_c']

        Returns:

            coarse_matches (dict): {

                'b_ids' (torch.Tensor): [M'],

                'i_ids' (torch.Tensor): [M'],

                'j_ids' (torch.Tensor): [M'],

                'gt_mask' (torch.Tensor): [M'],

                'm_bids' (torch.Tensor): [M],

                'mkpts0_c' (torch.Tensor): [M, 2],

                'mkpts1_c' (torch.Tensor): [M, 2],

                'mconf' (torch.Tensor): [M]}

        """
        axes_lengths = {
            'h0c': data['hw0_c'][0],
            'w0c': data['hw0_c'][1],
            'h1c': data['hw1_c'][0],
            'w1c': data['hw1_c'][1]
        }
        _device = conf_matrix_0_to_1.device

        # confidence thresholding
        # {(nearest neighbour for 0 to 1) U (nearest neighbour for 1 to 0)}
        mask = torch.logical_or((conf_matrix_0_to_1 > self.thr) * (conf_matrix_0_to_1 == conf_matrix_0_to_1.max(dim=2, keepdim=True)[0]),
                               (conf_matrix_1_to_0 > self.thr) * (conf_matrix_1_to_0 == conf_matrix_1_to_0.max(dim=1, keepdim=True)[0]))
        
        mask = rearrange(mask, 'b (h0c w0c) (h1c w1c) -> b h0c w0c h1c w1c',
                         **axes_lengths)
        if 'mask0' not in data:
            mask_border(mask, self.border_rm, False)
        else:
            mask_border_with_padding(mask, self.border_rm, False,
                                     data['mask0'], data['mask1'])
        mask = rearrange(mask, 'b h0c w0c h1c w1c -> b (h0c w0c) (h1c w1c)',
                         **axes_lengths)

        # find all valid coarse matches
        b_ids, i_ids, j_ids = mask.nonzero(as_tuple=True)

        mconf = torch.maximum(conf_matrix_0_to_1[b_ids, i_ids, j_ids], conf_matrix_1_to_0[b_ids, i_ids, j_ids])

        # random sampling of training samples for fine-level XoFTR
        # (optional) pad samples with gt coarse-level matches
        if self.training:
            # NOTE:
            # the sampling is performed across all pairs in a batch without manually balancing
            # samples for fine-level increases w.r.t. batch_size
            if 'mask0' not in data:
                num_candidates_max = mask.size(0) * max(
                    mask.size(1), mask.size(2))
            else:
                num_candidates_max = compute_max_candidates(
                    data['mask0'], data['mask1'])
            num_matches_train = int(num_candidates_max *
                                    self.train_coarse_percent)
            num_matches_pred = len(b_ids)
            assert self.train_pad_num_gt_min < num_matches_train, "min-num-gt-pad should be less than num-train-matches"

            # pred_indices is to select from prediction
            if num_matches_pred <= num_matches_train - self.train_pad_num_gt_min:
                pred_indices = torch.arange(num_matches_pred, device=_device)
            else:
                pred_indices = torch.randint(
                    num_matches_pred,
                    (num_matches_train - self.train_pad_num_gt_min, ),
                    device=_device)

            # gt_pad_indices is to select from gt padding. e.g. max(3787-4800, 200)
            gt_pad_indices = torch.randint(
                    len(data['spv_b_ids']),
                    (max(num_matches_train - num_matches_pred,
                        self.train_pad_num_gt_min), ),
                    device=_device)
            mconf_gt = torch.zeros(len(data['spv_b_ids']), device=_device)  # set conf of gt paddings to all zero

            b_ids, i_ids, j_ids, mconf = map(
                lambda x, y: torch.cat([x[pred_indices], y[gt_pad_indices]],
                                       dim=0),
                *zip([b_ids, data['spv_b_ids']], [i_ids, data['spv_i_ids']],
                     [j_ids, data['spv_j_ids']], [mconf, mconf_gt]))

        # these matches are selected patches that feed into fine-level network
        coarse_matches = {'b_ids': b_ids, 'i_ids': i_ids, 'j_ids': j_ids}

        # update with matches in original image resolution
        scale = data['hw0_i'][0] / data['hw0_c'][0]
        scale0 = scale * data['scale0'][b_ids] if 'scale0' in data else scale
        scale1 = scale * data['scale1'][b_ids] if 'scale1' in data else scale
        mkpts0_c = torch.stack(
            [i_ids % data['hw0_c'][1], torch.div(i_ids, data['hw0_c'][1], rounding_mode='trunc')], 
            dim=1) * scale0
        mkpts1_c = torch.stack(
            [j_ids % data['hw1_c'][1], torch.div(j_ids, data['hw1_c'][1], rounding_mode='trunc')], 
            dim=1) * scale1

        # these matches is the current prediction (for visualization)
        coarse_matches.update({
            'gt_mask': mconf == 0,
            'm_bids': b_ids[mconf != 0],  # mconf == 0 => gt matches
            'mkpts0_c': mkpts0_c[mconf != 0],
            'mkpts1_c': mkpts1_c[mconf != 0],
            'mconf': mconf[mconf != 0]
        })

        return coarse_matches
    
    @torch.no_grad()
    def get_coarse_match_inference(self, sim_matrix, data):
        """

        Args:

            sim_matrix (torch.Tensor): [N, L, S]

            data (dict): with keys ['hw0_i', 'hw1_i', 'hw0_c', 'hw1_c']

        Returns:

            coarse_matches (dict): {

                'b_ids' (torch.Tensor): [M'],

                'i_ids' (torch.Tensor): [M'],

                'j_ids' (torch.Tensor): [M'],

                'gt_mask' (torch.Tensor): [M'],

                'm_bids' (torch.Tensor): [M],

                'mkpts0_c' (torch.Tensor): [M, 2],

                'mkpts1_c' (torch.Tensor): [M, 2],

                'mconf' (torch.Tensor): [M]}

        """
        axes_lengths = {
            'h0c': data['hw0_c'][0],
            'w0c': data['hw0_c'][1],
            'h1c': data['hw1_c'][0],
            'w1c': data['hw1_c'][1]
        }

        # softmax for 0 to 1
        conf_matrix_ = F.softmax(sim_matrix, 2) 
        
        # confidence thresholding and nearest neighbour for 0 to 1
        mask = (conf_matrix_ > self.thr) * (conf_matrix_ == conf_matrix_.max(dim=2, keepdim=True)[0])

        # unlike training, reuse the same conf martix to decrease the vram consumption
        # softmax for 0 to 1
        conf_matrix_ = F.softmax(sim_matrix, 1) 

        # update mask {(nearest neighbour for 0 to 1) U (nearest neighbour for 1 to 0)}
        mask = torch.logical_or(mask,
                                 (conf_matrix_ > self.thr) * (conf_matrix_ == conf_matrix_.max(dim=1, keepdim=True)[0]))
        
        mask = rearrange(mask, 'b (h0c w0c) (h1c w1c) -> b h0c w0c h1c w1c',
                    **axes_lengths)
        if 'mask0' not in data:
            mask_border(mask, self.border_rm, False)
        else:
            mask_border_with_padding(mask, self.border_rm, False,
                                     data['mask0'], data['mask1'])
        mask = rearrange(mask, 'b h0c w0c h1c w1c -> b (h0c w0c) (h1c w1c)',
                         **axes_lengths)

        # find all valid coarse matches
        b_ids, i_ids, j_ids = mask.nonzero(as_tuple=True)
        
        # mconf = torch.maximum(conf_matrix_0_to_1[b_ids, i_ids, j_ids], conf_matrix_1_to_0[b_ids, i_ids, j_ids])

        # these matches are selected patches that feed into fine-level network
        coarse_matches = {'b_ids': b_ids, 'i_ids': i_ids, 'j_ids': j_ids}

        # update with matches in original image resolution
        scale = data['hw0_i'][0] / data['hw0_c'][0]
        scale0 = scale * data['scale0'][b_ids] if 'scale0' in data else scale
        scale1 = scale * data['scale1'][b_ids] if 'scale1' in data else scale
        mkpts0_c = torch.stack(
            [i_ids % data['hw0_c'][1], torch.div(i_ids, data['hw0_c'][1], rounding_mode='trunc')], 
            dim=1) * scale0
        mkpts1_c = torch.stack(
            [j_ids % data['hw1_c'][1], torch.div(j_ids, data['hw1_c'][1], rounding_mode='trunc')],
            dim=1) * scale1

        # these matches are the current coarse level predictions
        coarse_matches.update({
            'm_bids': b_ids,  # mconf == 0 => gt matches
            'mkpts0_c': mkpts0_c,
            'mkpts1_c': mkpts1_c,
        })

        return coarse_matches