File size: 7,290 Bytes
a930e1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import torch
import torch.nn as nn
import torch.nn.functional as F

class FineSubMatching(nn.Module):
    """Fine-level and Sub-pixel matching"""

    def __init__(self, config):
        super().__init__()
        self.temperature = config['fine']['dsmax_temperature']
        self.W_f = config['fine_window_size']
        self.denser = config['fine']['denser']
        self.inference = config['fine']['inference']
        dim_f = config['resnet']['block_dims'][0]
        self.fine_thr = config['fine']['thr']
        self.fine_proj = nn.Linear(dim_f, dim_f, bias=False)
        self.subpixel_mlp = nn.Sequential(nn.Linear(2*dim_f, 2*dim_f, bias=False),
                                           nn.ReLU(),
                                           nn.Linear(2*dim_f, 4, bias=False))
    
    def forward(self, feat_f0_unfold, feat_f1_unfold, data):
        """

        Args:

            feat_f0_unfold (torch.Tensor): [M, WW, C]

            feat_f1_unfold (torch.Tensor): [M, WW, C]

            data (dict)

        Update:

            data (dict):{

                'expec_f' (torch.Tensor): [M, 3],

                'mkpts0_f' (torch.Tensor): [M, 2],

                'mkpts1_f' (torch.Tensor): [M, 2]}

        """

        feat_f0 = self.fine_proj(feat_f0_unfold)
        feat_f1 = self.fine_proj(feat_f1_unfold)

        M, WW, C = feat_f0.shape
        W_f = self.W_f

        # corner case: if no coarse matches found
        if M == 0:
            assert self.training == False, "M is always >0, when training, see coarse_matching.py"
            # logger.warning('No matches found in coarse-level.')
            data.update({
                'mkpts0_f': data['mkpts0_c'],
                'mkpts1_f': data['mkpts1_c'],
                'mconf_f': torch.zeros(0, device=feat_f0_unfold.device),
                # 'mkpts0_f_train': data['mkpts0_c'],
                # 'mkpts1_f_train': data['mkpts1_c'],
                # 'conf_matrix_fine': torch.zeros(1, W_f*W_f, W_f*W_f, device=feat_f0.device)
            })
            return
        
        # normalize
        feat_f0, feat_f1 = map(lambda feat: feat / feat.shape[-1]**.5,
                               [feat_f0, feat_f1])
        sim_matrix = torch.einsum("nlc,nsc->nls", feat_f0,
                                      feat_f1) / self.temperature
        
        conf_matrix_fine = F.softmax(sim_matrix, 1) * F.softmax(sim_matrix, 2)
        data.update({'conf_matrix_fine': conf_matrix_fine})

        # predict fine-level and sub-pixel matches from conf_matrix
        data.update(**self.get_fine_sub_match(conf_matrix_fine, feat_f0_unfold, feat_f1_unfold, data))

    def get_fine_sub_match(self, conf_matrix_fine, feat_f0_unfold, feat_f1_unfold, data):
        """

        Args:

            conf_matrix_fine (torch.Tensor): [M, WW, WW]

            feat_f0_unfold (torch.Tensor): [M, WW, C]

            feat_f1_unfold (torch.Tensor): [M, WW, C]

            data (dict)

        Update:

            data (dict):{

                'm_bids' (torch.Tensor): [M]

                'expec_f' (torch.Tensor): [M, 3],

                'mkpts0_f' (torch.Tensor): [M, 2],

                'mkpts1_f' (torch.Tensor): [M, 2]}

        """
        
        with torch.no_grad():
            W_f = self.W_f

            # 1. confidence thresholding
            mask = conf_matrix_fine > self.fine_thr

            if mask.sum() == 0:
                mask[0,0,0] = 1
                conf_matrix_fine[0,0,0] = 1

            if not self.denser:
                # match only the highest confidence
                mask = mask \
                    * (conf_matrix_fine == conf_matrix_fine.amax(dim=[1,2], keepdim=True))
            else:
                # 2. mutual nearest, match all features in fine window
                mask = mask \
                    * (conf_matrix_fine == conf_matrix_fine.max(dim=2, keepdim=True)[0]) \
                    * (conf_matrix_fine == conf_matrix_fine.max(dim=1, keepdim=True)[0])

            # 3. find all valid fine matches
            # this only works when at most one `True` in each row
            mask_v, all_j_ids = mask.max(dim=2)
            b_ids, i_ids = torch.where(mask_v)
            j_ids = all_j_ids[b_ids, i_ids]
            mconf = conf_matrix_fine[b_ids, i_ids, j_ids]

            # 4. update with matches in original image resolution

            # indices from coarse matches
            b_ids_c, i_ids_c, j_ids_c = data['b_ids'], data['i_ids'], data['j_ids']

            # scale (coarse level / fine-level)
            scale_f_c = data['hw0_f'][0] // data['hw0_c'][0]

            # coarse level matches scaled to fine-level (1/2)
            mkpts0_c_scaled_to_f = torch.stack(
            [i_ids_c % data['hw0_c'][1], torch.div(i_ids_c, data['hw0_c'][1], rounding_mode='trunc')], 
            dim=1) * scale_f_c 

            mkpts1_c_scaled_to_f = torch.stack(
                [j_ids_c % data['hw1_c'][1], torch.div(j_ids_c, data['hw1_c'][1], rounding_mode='trunc')], 
                dim=1) * scale_f_c

            # updated b_ids after second thresholding
            updated_b_ids = b_ids_c[b_ids]

            # scales (image res / fine level)
            scale = data['hw0_i'][0] / data['hw0_f'][0]
            scale0 = scale * data['scale0'][updated_b_ids] if 'scale0' in data else scale
            scale1 = scale * data['scale1'][updated_b_ids] if 'scale1' in data else scale

            # fine-level discrete matches on window coordiantes
            mkpts0_f_window = torch.stack(
            [i_ids % W_f, torch.div(i_ids, W_f, rounding_mode='trunc')], 
            dim=1) 

            mkpts1_f_window = torch.stack(
            [j_ids % W_f, torch.div(j_ids, W_f, rounding_mode='trunc')], 
            dim=1) 

        # sub-pixel refinement 
        sub_ref = self.subpixel_mlp(torch.cat([feat_f0_unfold[b_ids, i_ids],
                                                     feat_f1_unfold[b_ids, j_ids]], dim=-1))
        sub_ref0, sub_ref1 = torch.chunk(sub_ref, 2, dim=-1)
        sub_ref0 = torch.tanh(sub_ref0) * 0.5 
        sub_ref1 = torch.tanh(sub_ref1) * 0.5
        
        # final sub-pixel matches by (coarse-level + fine-level windowed + sub-pixel refinement)
        mkpts0_f_train = (mkpts0_f_window + mkpts0_c_scaled_to_f[b_ids] - (W_f//2) + sub_ref0) * scale0
        mkpts1_f_train = (mkpts1_f_window + mkpts1_c_scaled_to_f[b_ids] - (W_f//2) + sub_ref1) * scale1
        mkpts0_f = mkpts0_f_train.clone().detach()
        mkpts1_f = mkpts1_f_train.clone().detach()

        # These matches is the current prediction (for visualization)
        sub_pixel_matches = {
            'm_bids': b_ids_c[b_ids[mconf != 0]],  # mconf == 0 => gt matches
            'mkpts0_f': mkpts0_f[mconf != 0],
            'mkpts1_f': mkpts1_f[mconf != 0],
            'mconf_f': mconf[mconf != 0]
        }

        # These matches are used for training
        if not self.inference:
            sub_pixel_matches.update({
                'mkpts0_f_train': mkpts0_f_train[mconf != 0],
                'mkpts1_f_train': mkpts1_f_train[mconf != 0],
            })

        return sub_pixel_matches