File size: 14,587 Bytes
a930e1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops.einops import rearrange

class Mlp(nn.Module):
    """Multi-Layer Perceptron (MLP)"""

    def __init__(self,

                 in_dim,

                 hidden_dim=None,

                 out_dim=None,

                 act_layer=nn.GELU):
        """

        Args:

            in_dim: input features dimension

            hidden_dim: hidden features dimension

            out_dim: output features dimension

            act_layer: activation function

        """
        super().__init__()
        out_dim = out_dim or in_dim
        hidden_dim = hidden_dim or in_dim
        self.fc1 = nn.Linear(in_dim, hidden_dim)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_dim, out_dim)
        self.out_dim = out_dim

    def forward(self, x):
        x_size = x.size()
        x = x.view(-1, x_size[-1])
        x = self.fc1(x)
        x = self.act(x)
        x = self.fc2(x)
        x = x.view(*x_size[:-1], self.out_dim)
        return x
    

class VanillaAttention(nn.Module):
    def __init__(self,

                 dim,

                 num_heads=8,

                 proj_bias=False):
        super().__init__()
        """

        Args:

            dim: feature dimension

            num_heads: number of attention head

            proj_bias: bool use query, key, value bias

        """
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.softmax_temp = self.head_dim ** -0.5
        self.kv_proj = nn.Linear(dim, dim * 2, bias=proj_bias)
        self.q_proj = nn.Linear(dim, dim, bias=proj_bias)
        self.merge = nn.Linear(dim, dim)

    def forward(self, x_q, x_kv=None):
        """

        Args:

            x_q (torch.Tensor): [N, L, C]

            x_kv (torch.Tensor): [N, S, C]

        """
        if x_kv is None:
            x_kv = x_q
        bs, _, dim = x_q.shape
        bs, _, dim = x_kv.shape
        # [N, S, 2, H, D] => [2, N, H, S, D]
        kv = self.kv_proj(x_kv).reshape(bs, -1, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) 
        # [N, L, H, D] => [N, H, L, D]
        q = self.q_proj(x_q).reshape(bs, -1, self.num_heads, self.head_dim).permute(0, 2, 1, 3)
        k, v = kv[0].transpose(-2, -1).contiguous(), kv[1].contiguous() # [N, H, D, S], [N, H, S, D]
        attn = (q @ k) * self.softmax_temp # [N, H, L, S]
        attn = attn.softmax(dim=-1)
        x_q = (attn @ v).transpose(1, 2).reshape(bs, -1, dim)
        x_q = self.merge(x_q)
        return x_q
    

class CrossBidirectionalAttention(nn.Module):
    def __init__(self, dim, num_heads, proj_bias = False):
        super().__init__()
        """

        Args:

            dim: feature dimension

            num_heads: number of attention head

            proj_bias: bool use query, key, value bias

        """

        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.softmax_temp = self.head_dim ** -0.5
        self.qk_proj = nn.Linear(dim, dim, bias=proj_bias)
        self.v_proj = nn.Linear(dim, dim, bias=proj_bias)
        self.merge = nn.Linear(dim, dim, bias=proj_bias)
        self.temperature = nn.Parameter(torch.tensor([0.0]), requires_grad=True)
        # print(self.temperature)

    def map_(self, func, x0, x1):
        return func(x0), func(x1)

    def forward(self, x0, x1):
        """

        Args:

            x0 (torch.Tensor): [N, L, C]

            x1 (torch.Tensor): [N, S, C]

        """
        bs = x0.size(0)

        qk0, qk1 = self.map_(self.qk_proj, x0, x1)
        v0, v1 = self.map_(self.v_proj, x0, x1)
        qk0, qk1, v0, v1 = map(
            lambda t: t.reshape(bs, -1, self.num_heads, self.head_dim).permute(0, 2, 1, 3).contiguous(),
            (qk0, qk1, v0, v1))

        qk0, qk1 = qk0 * self.softmax_temp**0.5, qk1 * self.softmax_temp**0.5
        sim = qk0 @ qk1.transpose(-2,-1).contiguous()
        attn01 = F.softmax(sim, dim=-1) 
        attn10 = F.softmax(sim.transpose(-2, -1).contiguous(), dim=-1) 
        x0 = attn01 @ v1
        x1 = attn10 @ v0
        x0, x1 = self.map_(lambda t: t.transpose(1, 2).flatten(start_dim=-2),
                        x0, x1)
        x0, x1 = self.map_(self.merge, x0, x1)

        return x0, x1
    

class SwinPosEmbMLP(nn.Module):
    def __init__(self,

                 dim):
        super().__init__()
        self.pos_embed = None
        self.pos_mlp = nn.Sequential(nn.Linear(2, 512, bias=True),
                                        nn.ReLU(),
                                        nn.Linear(512, dim, bias=False))
        
    def forward(self, x):
        seq_length = x.shape[1] 
        if self.pos_embed is None or self.training:
            seq_length = int(seq_length**0.5)
            coords = torch.arange(0, seq_length, device=x.device, dtype = x.dtype)
            grid = torch.stack(torch.meshgrid([coords, coords])).contiguous().unsqueeze(0)
            grid -= seq_length // 2
            grid /= (seq_length // 2)
            self.pos_embed = self.pos_mlp(grid.flatten(2).transpose(1,2))
        x = x + self.pos_embed
        return x


class WindowSelfAttention(nn.Module):
    def __init__(self, dim, num_heads, mlp_hidden_coef, use_pre_pos_embed=False):
        super().__init__()
        self.mlp = Mlp(in_dim=dim*2, hidden_dim=dim*mlp_hidden_coef, out_dim=dim, act_layer=nn.GELU)
        self.gamma = nn.Parameter(torch.ones(dim))  
        self.norm1 = nn.LayerNorm(dim)
        self.norm2 = nn.LayerNorm(dim)
        self.attn = VanillaAttention(dim, num_heads=num_heads)
        self.pos_embed = SwinPosEmbMLP(dim)
        self.pos_embed_pre = SwinPosEmbMLP(dim) if use_pre_pos_embed else nn.Identity()

    def forward(self, x, x_pre):
        ww = x.shape[1]
        ww_pre = x_pre.shape[1]
        x = self.pos_embed(x)
        x_pre = self.pos_embed_pre(x_pre)
        x = torch.cat((x, x_pre), dim=1)
        x = x + self.gamma*self.norm1(self.mlp(torch.cat([x, self.attn(self.norm2(x))], dim=-1)))
        x, x_pre = x.split([ww, ww_pre], dim=1)
        return x, x_pre


class WindowCrossAttention(nn.Module):
    def __init__(self, dim, num_heads, mlp_hidden_coef):
        super().__init__()  
        self.norm1 = nn.LayerNorm(dim)
        self.norm2 = nn.LayerNorm(dim)
        self.mlp = Mlp(in_dim=dim*2, hidden_dim=dim*mlp_hidden_coef, out_dim=dim, act_layer=nn.GELU)
        self.cross_attn = CrossBidirectionalAttention(dim, num_heads=num_heads, proj_bias=False)
        self.gamma = nn.Parameter(torch.ones(dim))

    def forward(self, x0, x1):
        m_x0, m_x1 = self.cross_attn(self.norm1(x0), self.norm1(x1))
        x0 = x0 + self.gamma*self.norm2(self.mlp(torch.cat([x0, m_x0], dim=-1)))
        x1 = x1 + self.gamma*self.norm2(self.mlp(torch.cat([x1, m_x1], dim=-1)))
        return x0, x1


class FineProcess(nn.Module):
    def __init__(self, config):
        super().__init__()
        # Config
        block_dims = config['resnet']['block_dims']
        self.block_dims = block_dims
        self.W_f = config['fine_window_size']
        self.W_m = config['medium_window_size'] 
        nhead_f = config["fine"]['nhead_fine_level']
        nhead_m = config["fine"]['nhead_medium_level']  
        mlp_hidden_coef = config["fine"]['mlp_hidden_dim_coef'] 

        # Networks
        self.conv_merge = nn.Sequential(nn.Conv2d(block_dims[2]*2, block_dims[1], kernel_size=1, stride=1, padding=0, bias=False),
                                        nn.Conv2d(block_dims[1], block_dims[1], kernel_size=3, stride=1, padding=1, groups=block_dims[1], bias=False),
                                        nn.BatchNorm2d(block_dims[1])
                                        )
        self.out_conv_m = nn.Conv2d(block_dims[1], block_dims[1], kernel_size=1, stride=1, padding=0, bias=False)
        self.out_conv_f = nn.Conv2d(block_dims[0], block_dims[0], kernel_size=1, stride=1, padding=0, bias=False)
        self.self_attn_m = WindowSelfAttention(block_dims[1], num_heads=nhead_m,
                                                mlp_hidden_coef=mlp_hidden_coef, use_pre_pos_embed=False)
        self.cross_attn_m = WindowCrossAttention(block_dims[1], num_heads=nhead_m,
                                                  mlp_hidden_coef=mlp_hidden_coef)
        self.self_attn_f = WindowSelfAttention(block_dims[0], num_heads=nhead_f,
                                                mlp_hidden_coef=mlp_hidden_coef, use_pre_pos_embed=True)
        self.cross_attn_f = WindowCrossAttention(block_dims[0], num_heads=nhead_f,
                                                  mlp_hidden_coef=mlp_hidden_coef)
        self.down_proj_m_f = nn.Linear(block_dims[1], block_dims[0], bias=False)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

    def pre_process(self, feat_f0, feat_f1, feat_m0, feat_m1, feat_c0, feat_c1, feat_c0_pre, feat_c1_pre, data):
        W_f = self.W_f
        W_m = self.W_m
        data.update({'W_f': W_f,
                'W_m': W_m})

        # merge coarse features before and after loftr layer, and down proj channel dimesions
        feat_c0 = rearrange(feat_c0, 'n (h w) c -> n c h w', h =data["hw0_c"][0], w =data["hw0_c"][1])
        feat_c1 = rearrange(feat_c1, 'n (h w) c -> n c h w', h =data["hw1_c"][0], w =data["hw1_c"][1])
        feat_c0 = self.conv_merge(torch.cat([feat_c0, feat_c0_pre], dim=1))
        feat_c1 = self.conv_merge(torch.cat([feat_c1, feat_c1_pre], dim=1))
        feat_c0 = rearrange(feat_c0, 'n c h w -> n (h w) 1 c')
        feat_c1 = rearrange(feat_c1, 'n c h w -> n (h w) 1 c')
    
        stride_f = data['hw0_f'][0] // data['hw0_c'][0]
        stride_m = data['hw0_m'][0] // data['hw0_c'][0]
    
        if feat_m0.shape[2] == feat_m1.shape[2] and feat_m0.shape[3] == feat_m1.shape[3]:
            feat_m = self.out_conv_m(torch.cat([feat_m0, feat_m1], dim=0))
            feat_m0, feat_m1 = torch.chunk(feat_m, 2, dim=0)
            feat_f = self.out_conv_f(torch.cat([feat_f0, feat_f1], dim=0))
            feat_f0, feat_f1 = torch.chunk(feat_f, 2, dim=0)
        else:
            feat_m0 = self.out_conv_m(feat_m0)
            feat_m1 = self.out_conv_m(feat_m1)
            feat_f0 = self.out_conv_f(feat_f0)
            feat_f1 = self.out_conv_f(feat_f1)

        # 1. unfold (crop windows) all local windows
        feat_m0_unfold = F.unfold(feat_m0, kernel_size=(W_m, W_m), stride=stride_m, padding=W_m//2)
        feat_m0_unfold = rearrange(feat_m0_unfold, 'n (c ww) l -> n l ww c', ww=W_m**2)
        feat_m1_unfold = F.unfold(feat_m1, kernel_size=(W_m, W_m), stride=stride_m, padding=W_m//2)
        feat_m1_unfold = rearrange(feat_m1_unfold, 'n (c ww) l -> n l ww c', ww=W_m**2)

        feat_f0_unfold = F.unfold(feat_f0, kernel_size=(W_f, W_f), stride=stride_f, padding=W_f//2)
        feat_f0_unfold = rearrange(feat_f0_unfold, 'n (c ww) l -> n l ww c', ww=W_f**2)
        feat_f1_unfold = F.unfold(feat_f1, kernel_size=(W_f, W_f), stride=stride_f, padding=W_f//2)
        feat_f1_unfold = rearrange(feat_f1_unfold, 'n (c ww) l -> n l ww c', ww=W_f**2)

        # 2. select only the predicted matches
        feat_c0 = feat_c0[data['b_ids'], data['i_ids']] # [n, ww, cm]
        feat_c1 = feat_c1[data['b_ids'], data['j_ids']]

        feat_m0_unfold = feat_m0_unfold[data['b_ids'], data['i_ids']]  # [n, ww, cm]
        feat_m1_unfold = feat_m1_unfold[data['b_ids'], data['j_ids']]

        feat_f0_unfold = feat_f0_unfold[data['b_ids'], data['i_ids']]  # [n, ww, cf]
        feat_f1_unfold = feat_f1_unfold[data['b_ids'], data['j_ids']]

        return feat_c0, feat_c1, feat_m0_unfold, feat_m1_unfold, feat_f0_unfold, feat_f1_unfold

    def forward(self, feat_f0, feat_f1, feat_m0, feat_m1, feat_c0, feat_c1, feat_c0_pre, feat_c1_pre, data):
        """

        Args:

            feat_f0 (torch.Tensor): [N, C, H, W]

            feat_f1 (torch.Tensor): [N, C, H, W]

            feat_m0 (torch.Tensor): [N, C, H, W]

            feat_m1 (torch.Tensor): [N, C, H, W]

            feat_c0 (torch.Tensor): [N, L, C]

            feat_c1 (torch.Tensor): [N, S, C]

            feat_c0_pre (torch.Tensor): [N, C, H, W]

            feat_c1_pre (torch.Tensor): [N, C, H, W]

            data (dict): with keys ['hw0_c', 'hw1_c', 'hw0_m', 'hw1_m', 'hw0_f', 'hw1_f', 'b_ids', 'j_ids']

        """

        # TODO: Check for this case
        if data['b_ids'].shape[0] == 0:
            feat0 = torch.empty(0, self.W_f**2, self.block_dims[0], device=feat_f0.device)
            feat1 = torch.empty(0, self.W_f**2, self.block_dims[0], device=feat_f0.device)
            return feat0, feat1
        
        feat_c0, feat_c1, feat_m0_unfold, feat_m1_unfold, \
            feat_f0_unfold, feat_f1_unfold = self.pre_process(feat_f0, feat_f1, feat_m0, feat_m1,
                                                               feat_c0, feat_c1, feat_c0_pre, feat_c1_pre, data)
        
        # self attention (c + m) 
        feat_m_unfold, _ = self.self_attn_m(torch.cat([feat_m0_unfold, feat_m1_unfold], dim=0),
                                                         torch.cat([feat_c0, feat_c1], dim=0))
        feat_m0_unfold, feat_m1_unfold = torch.chunk(feat_m_unfold, 2, dim=0)

        # cross attention (m0 <-> m1)
        feat_m0_unfold, feat_m1_unfold = self.cross_attn_m(feat_m0_unfold, feat_m1_unfold)

        # down proj m
        feat_m_unfold = self.down_proj_m_f(torch.cat([feat_m0_unfold, feat_m1_unfold], dim=0))
        feat_m0_unfold, feat_m1_unfold = torch.chunk(feat_m_unfold, 2, dim=0)

        # self attention (m + f) 
        feat_f_unfold, _ = self.self_attn_f(torch.cat([feat_f0_unfold, feat_f1_unfold], dim=0),
                                                         torch.cat([feat_m0_unfold, feat_m1_unfold], dim=0))
        feat_f0_unfold, feat_f1_unfold = torch.chunk(feat_f_unfold, 2, dim=0)

        # cross attention (f0 <-> f1)
        feat_f0_unfold, feat_f1_unfold = self.cross_attn_f(feat_f0_unfold, feat_f1_unfold)
        
        return feat_f0_unfold, feat_f1_unfold