File size: 12,849 Bytes
a930e1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
from collections import defaultdict, OrderedDict
import os
import os.path as osp
import numpy as np
from tqdm import tqdm
import argparse
import cv2
from pathlib import Path
import warnings
import json
import time

from src.utils.metrics import estimate_pose, relative_pose_error, error_auc, symmetric_epipolar_distance_numpy
from src.utils.plotting import dynamic_alpha, error_colormap, make_matching_figure


# Loading functions for methods
####################################################################
def load_xoftr(args):
    from src.xoftr import XoFTR
    from src.config.default import get_cfg_defaults
    from src.utils.data_io import DataIOWrapper, lower_config
    config = get_cfg_defaults(inference=True)
    config = lower_config(config)
    config["xoftr"]["match_coarse"]["thr"] = args.match_threshold
    config["xoftr"]["fine"]["thr"] = args.fine_threshold
    ckpt = args.ckpt
    matcher = XoFTR(config=config["xoftr"])
    matcher = DataIOWrapper(matcher, config=config["test"], ckpt=ckpt)
    return matcher.from_paths

####################################################################

def load_vis_tir_pairs_npz(npz_root, npz_list):
    """Load information for scene and image pairs from npz files.

    Args:

        npz_root: Directory path for npz files

        npz_list: File containing the names of the npz files to be used

    """
    with open(npz_list, 'r') as f:
        npz_names = [name.split()[0] for name in f.readlines()]
    print(f"Parse {len(npz_names)} npz from {npz_list}.")

    total_pairs = 0
    scene_pairs = {}
    
    for name in npz_names:
        print(f"Loading {name}")
        scene_info = np.load(f"{npz_root}/{name}", allow_pickle=True)
        pairs = []

        # Collect pairs
        for pair_info in scene_info['pair_infos']:
            total_pairs += 1
            (id0, id1) = pair_info
            im0 = scene_info['image_paths'][id0][0]
            im1 = scene_info['image_paths'][id1][1]
            K0 = scene_info['intrinsics'][id0][0].astype(np.float32)
            K1 = scene_info['intrinsics'][id1][1].astype(np.float32)

            dist0 =  np.array(scene_info['distortion_coefs'][id0][0], dtype=float)
            dist1 = np.array(scene_info['distortion_coefs'][id1][1], dtype=float)
            # Compute relative pose
            T0 = scene_info['poses'][id0]
            T1 = scene_info['poses'][id1]
            T_0to1 = np.matmul(T1, np.linalg.inv(T0))
            pairs.append({'im0':im0, 'im1':im1, 'dist0':dist0, 'dist1':dist1,
                          'K0':K0, 'K1':K1, 'T_0to1':T_0to1})
        scene_pairs[name] = pairs

    print(f"Loaded {total_pairs} pairs.")
    return scene_pairs



def save_matching_figure(path, img0, img1, mkpts0, mkpts1, inlier_mask, T_0to1, K0, K1,  t_err=None, R_err=None, name=None, conf_thr = 5e-4):
    """ Make and save matching figures

    """
    Tx = np.cross(np.eye(3), T_0to1[:3, 3])
    E_mat = Tx @ T_0to1[:3, :3]
    mkpts0_inliers = mkpts0[inlier_mask]
    mkpts1_inliers = mkpts1[inlier_mask] 
    if inlier_mask is not None and len(inlier_mask) != 0:
        epi_errs = symmetric_epipolar_distance_numpy(mkpts0_inliers, mkpts1_inliers, E_mat, K0, K1)

        correct_mask = epi_errs < conf_thr
        precision = np.mean(correct_mask) if len(correct_mask) > 0 else 0
        n_correct = np.sum(correct_mask)

        # matching info
        alpha = dynamic_alpha(len(correct_mask))
        color = error_colormap(epi_errs, conf_thr, alpha=alpha)
        text_precision =[
        f'Precision({conf_thr:.2e}) ({100 * precision:.1f}%): {n_correct}/{len(mkpts0_inliers)}']
    else:
        text_precision =[
        f'No inliers after ransac']

    if name is not None:
        text=[name]
    else:
        text = []
    
    if t_err is not None and R_err is not None:
        error_text = [f"err_t: {t_err:.2f} °", f"err_R: {R_err:.2f} °"]   
        text +=error_text
    
    text += text_precision
    
    # make the figure
    figure = make_matching_figure(img0, img1, mkpts0_inliers, mkpts1_inliers,
                                  color, text=text, path=path, dpi=150)


def aggregiate_scenes(scene_pose_auc, thresholds):
    """Averages the auc results for cloudy_cloud and cloudy_sunny scenes

    """
    temp_pose_auc = {}
    for npz_name in scene_pose_auc.keys():
        scene_name = npz_name.split("_scene")[0]
        temp_pose_auc[scene_name] = [np.zeros(len(thresholds), dtype=np.float32), 0] # [sum, total_number]
    for npz_name in scene_pose_auc.keys():
        scene_name = npz_name.split("_scene")[0]
        temp_pose_auc[scene_name][0] += scene_pose_auc[npz_name]
        temp_pose_auc[scene_name][1] += 1
    
    agg_pose_auc = {}
    for scene_name in temp_pose_auc.keys():
        agg_pose_auc[scene_name] = temp_pose_auc[scene_name][0] / temp_pose_auc[scene_name][1]
    
    return agg_pose_auc

def eval_relapose(

    matcher,

    data_root,

    scene_pairs,

    ransac_thres,

    thresholds,

    save_figs,

    figures_dir=None,

    method=None,

    print_out=False,

    debug=False,

):
    scene_pose_auc = {}
    for scene_name in scene_pairs.keys():
        scene_dir =  osp.join(figures_dir, scene_name.split(".")[0])
        if save_figs and not osp.exists(scene_dir):
            os.makedirs(scene_dir)

        pairs = scene_pairs[scene_name]
        statis = defaultdict(list)
        np.set_printoptions(precision=2)

        # Eval on pairs
        print(f"\nStart evaluation on VisTir \n")
        for i, pair in tqdm(enumerate(pairs), smoothing=.1, total=len(pairs)):
            if debug and i > 10:
                break

            T_0to1 = pair['T_0to1']
            im0 = str(data_root / pair['im0'])
            im1 = str(data_root / pair['im1'])
            match_res = matcher(im0, im1, pair['K0'], pair['K1'], pair['dist0'], pair['dist1'])
            matches = match_res['matches']
            new_K0 = match_res['new_K0']
            new_K1 = match_res['new_K1']
            mkpts0 = match_res['mkpts0']
            mkpts1 = match_res['mkpts1']

            # Calculate pose errors
            ret = estimate_pose(
                mkpts0, mkpts1, new_K0, new_K1, thresh=ransac_thres
            )
            
            if ret is None:
                R, t, inliers = None, None, None
                t_err, R_err = np.inf, np.inf
                statis['failed'].append(i)
                statis['R_errs'].append(R_err)
                statis['t_errs'].append(t_err)
                statis['inliers'].append(np.array([]).astype(np.bool_))
            else:
                R, t, inliers = ret
                t_err, R_err = relative_pose_error(T_0to1, R, t)
                statis['R_errs'].append(R_err)
                statis['t_errs'].append(t_err)
                statis['inliers'].append(inliers.sum() / len(mkpts0))
                if print_out:
                    print(f"#M={len(matches)} R={R_err:.3f}, t={t_err:.3f}")
            
            if save_figs:
                img0_name = f"{'vis' if 'visible' in pair['im0'] else 'tir'}_{osp.basename(pair['im0']).split('.')[0]}"
                img1_name = f"{'vis' if 'visible' in pair['im1'] else 'tir'}_{osp.basename(pair['im1']).split('.')[0]}"
                fig_path = osp.join(scene_dir, f"{img0_name}_{img1_name}.jpg")
                save_matching_figure(path=fig_path, 
                                    img0=match_res['img0_undistorted'] if 'img0_undistorted' in match_res.keys() else match_res['img0'], 
                                    img1=match_res['img1_undistorted'] if 'img1_undistorted' in match_res.keys() else match_res['img1'], 
                                    mkpts0=mkpts0,
                                    mkpts1=mkpts1,
                                    inlier_mask=inliers,
                                    T_0to1=T_0to1,
                                    K0=new_K0,
                                    K1=new_K1,
                                    t_err=t_err,
                                    R_err=R_err,
                                    name=method
                                    ) 

        print(f"Scene: {scene_name} Total samples: {len(pairs)} Failed:{len(statis['failed'])}. \n")
        pose_errors = np.max(np.stack([statis['R_errs'], statis['t_errs']]), axis=0)
        pose_auc = error_auc(pose_errors, thresholds)  # (auc@5, auc@10, auc@20)
        scene_pose_auc[scene_name] = 100 * np.array([pose_auc[f'auc@{t}'] for t in thresholds])
        print(f"{scene_name} {pose_auc}")
    agg_pose_auc = aggregiate_scenes(scene_pose_auc, thresholds)
    return scene_pose_auc, agg_pose_auc

def test_relative_pose_vistir(

    data_root_dir,

    method="xoftr",

    exp_name = "VisTIR",

    ransac_thres=1.5,

    print_out=False,

    save_dir=None,

    save_figs=False,

    debug=False,

    args=None



):  
    if not osp.exists(osp.join(save_dir, method)):
        os.makedirs(osp.join(save_dir, method))

    counter = 0
    path = osp.join(save_dir, method, f"{exp_name}"+"_{}")
    while osp.exists(path.format(counter)):
        counter += 1
    exp_dir = path.format(counter)
    os.mkdir(exp_dir)
    results_file = osp.join(exp_dir, "results.json")
    figures_dir = osp.join(exp_dir, "match_figures")
    if save_figs:
        os.mkdir(figures_dir)

    # Init paths
    npz_root = data_root_dir / 'index/scene_info_test/'
    npz_list = data_root_dir / 'index/val_test_list/test_list.txt'
    data_root = data_root_dir 

    # Load pairs
    scene_pairs = load_vis_tir_pairs_npz(npz_root, npz_list)

    # Load method
    matcher = eval(f"load_{method}")(args)
    
    thresholds=[5, 10, 20]
    # Eval
    scene_pose_auc, agg_pose_auc = eval_relapose(
        matcher, 
        data_root,
        scene_pairs,
        ransac_thres=ransac_thres,
        thresholds=thresholds,
        save_figs=save_figs,
        figures_dir=figures_dir,
        method=method,
        print_out=print_out,
        debug=debug,
    )

    # Create result dict
    results = OrderedDict({"method": method, 
                        "exp_name": exp_name, 
                        "ransac_thres": ransac_thres,
                        "auc_thresholds": thresholds})
    results.update({key:value for key, value in vars(args).items() if key not in results})
    results.update({key:value.tolist() for key, value in agg_pose_auc.items()})
    results.update({key:value.tolist() for key, value in scene_pose_auc.items()})

    print(f"Results: {json.dumps(results, indent=4)}")
    
    # Save to json file
    with open(results_file, 'w') as outfile:
        json.dump(results, outfile, indent=4)

    print(f"Results saved to {results_file}")

if __name__ == '__main__':

    def add_common_arguments(parser):
        parser.add_argument('--gpu', '-gpu', type=str, default='0')
        parser.add_argument('--exp_name', type=str, default="VisTIR")
        parser.add_argument('--data_root_dir', type=str, default="./data/METU_VisTIR/")
        parser.add_argument('--save_dir', type=str, default="./results_relative_pose")
        parser.add_argument('--ransac_thres', type=float, default=1.5)
        parser.add_argument('--print_out', action='store_true')
        parser.add_argument('--debug', action='store_true')
        parser.add_argument('--save_figs', action='store_true')
    
    def add_xoftr_arguments(subparsers):
        subcommand = subparsers.add_parser('xoftr')
        subcommand.add_argument('--match_threshold', type=float, default=0.3)
        subcommand.add_argument('--fine_threshold', type=float, default=0.1)
        subcommand.add_argument('--ckpt', type=str, default="./weights/weights_xoftr_640.ckpt")
        add_common_arguments(subcommand)

    parser = argparse.ArgumentParser(description='Benchmark Relative Pose')
    add_common_arguments(parser)

    # Create subparsers for top-level commands
    subparsers = parser.add_subparsers(dest="method")
    add_xoftr_arguments(subparsers)
    
    args = parser.parse_args()

    os.environ['CUDA_VISIBLE_DEVICES'] = "0"
    tt = time.time()
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        test_relative_pose_vistir(
            Path(args.data_root_dir),
            args.method,
            args.exp_name,
            ransac_thres=args.ransac_thres,
            print_out=args.print_out,
            save_dir = args.save_dir,
            save_figs = args.save_figs,
            debug=args.debug,
            args=args
        )
    print(f"Elapsed time: {time.time() - tt}")