Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,849 Bytes
a930e1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
from collections import defaultdict, OrderedDict
import os
import os.path as osp
import numpy as np
from tqdm import tqdm
import argparse
import cv2
from pathlib import Path
import warnings
import json
import time
from src.utils.metrics import estimate_pose, relative_pose_error, error_auc, symmetric_epipolar_distance_numpy
from src.utils.plotting import dynamic_alpha, error_colormap, make_matching_figure
# Loading functions for methods
####################################################################
def load_xoftr(args):
from src.xoftr import XoFTR
from src.config.default import get_cfg_defaults
from src.utils.data_io import DataIOWrapper, lower_config
config = get_cfg_defaults(inference=True)
config = lower_config(config)
config["xoftr"]["match_coarse"]["thr"] = args.match_threshold
config["xoftr"]["fine"]["thr"] = args.fine_threshold
ckpt = args.ckpt
matcher = XoFTR(config=config["xoftr"])
matcher = DataIOWrapper(matcher, config=config["test"], ckpt=ckpt)
return matcher.from_paths
####################################################################
def load_vis_tir_pairs_npz(npz_root, npz_list):
"""Load information for scene and image pairs from npz files.
Args:
npz_root: Directory path for npz files
npz_list: File containing the names of the npz files to be used
"""
with open(npz_list, 'r') as f:
npz_names = [name.split()[0] for name in f.readlines()]
print(f"Parse {len(npz_names)} npz from {npz_list}.")
total_pairs = 0
scene_pairs = {}
for name in npz_names:
print(f"Loading {name}")
scene_info = np.load(f"{npz_root}/{name}", allow_pickle=True)
pairs = []
# Collect pairs
for pair_info in scene_info['pair_infos']:
total_pairs += 1
(id0, id1) = pair_info
im0 = scene_info['image_paths'][id0][0]
im1 = scene_info['image_paths'][id1][1]
K0 = scene_info['intrinsics'][id0][0].astype(np.float32)
K1 = scene_info['intrinsics'][id1][1].astype(np.float32)
dist0 = np.array(scene_info['distortion_coefs'][id0][0], dtype=float)
dist1 = np.array(scene_info['distortion_coefs'][id1][1], dtype=float)
# Compute relative pose
T0 = scene_info['poses'][id0]
T1 = scene_info['poses'][id1]
T_0to1 = np.matmul(T1, np.linalg.inv(T0))
pairs.append({'im0':im0, 'im1':im1, 'dist0':dist0, 'dist1':dist1,
'K0':K0, 'K1':K1, 'T_0to1':T_0to1})
scene_pairs[name] = pairs
print(f"Loaded {total_pairs} pairs.")
return scene_pairs
def save_matching_figure(path, img0, img1, mkpts0, mkpts1, inlier_mask, T_0to1, K0, K1, t_err=None, R_err=None, name=None, conf_thr = 5e-4):
""" Make and save matching figures
"""
Tx = np.cross(np.eye(3), T_0to1[:3, 3])
E_mat = Tx @ T_0to1[:3, :3]
mkpts0_inliers = mkpts0[inlier_mask]
mkpts1_inliers = mkpts1[inlier_mask]
if inlier_mask is not None and len(inlier_mask) != 0:
epi_errs = symmetric_epipolar_distance_numpy(mkpts0_inliers, mkpts1_inliers, E_mat, K0, K1)
correct_mask = epi_errs < conf_thr
precision = np.mean(correct_mask) if len(correct_mask) > 0 else 0
n_correct = np.sum(correct_mask)
# matching info
alpha = dynamic_alpha(len(correct_mask))
color = error_colormap(epi_errs, conf_thr, alpha=alpha)
text_precision =[
f'Precision({conf_thr:.2e}) ({100 * precision:.1f}%): {n_correct}/{len(mkpts0_inliers)}']
else:
text_precision =[
f'No inliers after ransac']
if name is not None:
text=[name]
else:
text = []
if t_err is not None and R_err is not None:
error_text = [f"err_t: {t_err:.2f} °", f"err_R: {R_err:.2f} °"]
text +=error_text
text += text_precision
# make the figure
figure = make_matching_figure(img0, img1, mkpts0_inliers, mkpts1_inliers,
color, text=text, path=path, dpi=150)
def aggregiate_scenes(scene_pose_auc, thresholds):
"""Averages the auc results for cloudy_cloud and cloudy_sunny scenes
"""
temp_pose_auc = {}
for npz_name in scene_pose_auc.keys():
scene_name = npz_name.split("_scene")[0]
temp_pose_auc[scene_name] = [np.zeros(len(thresholds), dtype=np.float32), 0] # [sum, total_number]
for npz_name in scene_pose_auc.keys():
scene_name = npz_name.split("_scene")[0]
temp_pose_auc[scene_name][0] += scene_pose_auc[npz_name]
temp_pose_auc[scene_name][1] += 1
agg_pose_auc = {}
for scene_name in temp_pose_auc.keys():
agg_pose_auc[scene_name] = temp_pose_auc[scene_name][0] / temp_pose_auc[scene_name][1]
return agg_pose_auc
def eval_relapose(
matcher,
data_root,
scene_pairs,
ransac_thres,
thresholds,
save_figs,
figures_dir=None,
method=None,
print_out=False,
debug=False,
):
scene_pose_auc = {}
for scene_name in scene_pairs.keys():
scene_dir = osp.join(figures_dir, scene_name.split(".")[0])
if save_figs and not osp.exists(scene_dir):
os.makedirs(scene_dir)
pairs = scene_pairs[scene_name]
statis = defaultdict(list)
np.set_printoptions(precision=2)
# Eval on pairs
print(f"\nStart evaluation on VisTir \n")
for i, pair in tqdm(enumerate(pairs), smoothing=.1, total=len(pairs)):
if debug and i > 10:
break
T_0to1 = pair['T_0to1']
im0 = str(data_root / pair['im0'])
im1 = str(data_root / pair['im1'])
match_res = matcher(im0, im1, pair['K0'], pair['K1'], pair['dist0'], pair['dist1'])
matches = match_res['matches']
new_K0 = match_res['new_K0']
new_K1 = match_res['new_K1']
mkpts0 = match_res['mkpts0']
mkpts1 = match_res['mkpts1']
# Calculate pose errors
ret = estimate_pose(
mkpts0, mkpts1, new_K0, new_K1, thresh=ransac_thres
)
if ret is None:
R, t, inliers = None, None, None
t_err, R_err = np.inf, np.inf
statis['failed'].append(i)
statis['R_errs'].append(R_err)
statis['t_errs'].append(t_err)
statis['inliers'].append(np.array([]).astype(np.bool_))
else:
R, t, inliers = ret
t_err, R_err = relative_pose_error(T_0to1, R, t)
statis['R_errs'].append(R_err)
statis['t_errs'].append(t_err)
statis['inliers'].append(inliers.sum() / len(mkpts0))
if print_out:
print(f"#M={len(matches)} R={R_err:.3f}, t={t_err:.3f}")
if save_figs:
img0_name = f"{'vis' if 'visible' in pair['im0'] else 'tir'}_{osp.basename(pair['im0']).split('.')[0]}"
img1_name = f"{'vis' if 'visible' in pair['im1'] else 'tir'}_{osp.basename(pair['im1']).split('.')[0]}"
fig_path = osp.join(scene_dir, f"{img0_name}_{img1_name}.jpg")
save_matching_figure(path=fig_path,
img0=match_res['img0_undistorted'] if 'img0_undistorted' in match_res.keys() else match_res['img0'],
img1=match_res['img1_undistorted'] if 'img1_undistorted' in match_res.keys() else match_res['img1'],
mkpts0=mkpts0,
mkpts1=mkpts1,
inlier_mask=inliers,
T_0to1=T_0to1,
K0=new_K0,
K1=new_K1,
t_err=t_err,
R_err=R_err,
name=method
)
print(f"Scene: {scene_name} Total samples: {len(pairs)} Failed:{len(statis['failed'])}. \n")
pose_errors = np.max(np.stack([statis['R_errs'], statis['t_errs']]), axis=0)
pose_auc = error_auc(pose_errors, thresholds) # (auc@5, auc@10, auc@20)
scene_pose_auc[scene_name] = 100 * np.array([pose_auc[f'auc@{t}'] for t in thresholds])
print(f"{scene_name} {pose_auc}")
agg_pose_auc = aggregiate_scenes(scene_pose_auc, thresholds)
return scene_pose_auc, agg_pose_auc
def test_relative_pose_vistir(
data_root_dir,
method="xoftr",
exp_name = "VisTIR",
ransac_thres=1.5,
print_out=False,
save_dir=None,
save_figs=False,
debug=False,
args=None
):
if not osp.exists(osp.join(save_dir, method)):
os.makedirs(osp.join(save_dir, method))
counter = 0
path = osp.join(save_dir, method, f"{exp_name}"+"_{}")
while osp.exists(path.format(counter)):
counter += 1
exp_dir = path.format(counter)
os.mkdir(exp_dir)
results_file = osp.join(exp_dir, "results.json")
figures_dir = osp.join(exp_dir, "match_figures")
if save_figs:
os.mkdir(figures_dir)
# Init paths
npz_root = data_root_dir / 'index/scene_info_test/'
npz_list = data_root_dir / 'index/val_test_list/test_list.txt'
data_root = data_root_dir
# Load pairs
scene_pairs = load_vis_tir_pairs_npz(npz_root, npz_list)
# Load method
matcher = eval(f"load_{method}")(args)
thresholds=[5, 10, 20]
# Eval
scene_pose_auc, agg_pose_auc = eval_relapose(
matcher,
data_root,
scene_pairs,
ransac_thres=ransac_thres,
thresholds=thresholds,
save_figs=save_figs,
figures_dir=figures_dir,
method=method,
print_out=print_out,
debug=debug,
)
# Create result dict
results = OrderedDict({"method": method,
"exp_name": exp_name,
"ransac_thres": ransac_thres,
"auc_thresholds": thresholds})
results.update({key:value for key, value in vars(args).items() if key not in results})
results.update({key:value.tolist() for key, value in agg_pose_auc.items()})
results.update({key:value.tolist() for key, value in scene_pose_auc.items()})
print(f"Results: {json.dumps(results, indent=4)}")
# Save to json file
with open(results_file, 'w') as outfile:
json.dump(results, outfile, indent=4)
print(f"Results saved to {results_file}")
if __name__ == '__main__':
def add_common_arguments(parser):
parser.add_argument('--gpu', '-gpu', type=str, default='0')
parser.add_argument('--exp_name', type=str, default="VisTIR")
parser.add_argument('--data_root_dir', type=str, default="./data/METU_VisTIR/")
parser.add_argument('--save_dir', type=str, default="./results_relative_pose")
parser.add_argument('--ransac_thres', type=float, default=1.5)
parser.add_argument('--print_out', action='store_true')
parser.add_argument('--debug', action='store_true')
parser.add_argument('--save_figs', action='store_true')
def add_xoftr_arguments(subparsers):
subcommand = subparsers.add_parser('xoftr')
subcommand.add_argument('--match_threshold', type=float, default=0.3)
subcommand.add_argument('--fine_threshold', type=float, default=0.1)
subcommand.add_argument('--ckpt', type=str, default="./weights/weights_xoftr_640.ckpt")
add_common_arguments(subcommand)
parser = argparse.ArgumentParser(description='Benchmark Relative Pose')
add_common_arguments(parser)
# Create subparsers for top-level commands
subparsers = parser.add_subparsers(dest="method")
add_xoftr_arguments(subparsers)
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = "0"
tt = time.time()
with warnings.catch_warnings():
warnings.simplefilter("ignore")
test_relative_pose_vistir(
Path(args.data_root_dir),
args.method,
args.exp_name,
ransac_thres=args.ransac_thres,
print_out=args.print_out,
save_dir = args.save_dir,
save_figs = args.save_figs,
debug=args.debug,
args=args
)
print(f"Elapsed time: {time.time() - tt}")
|